
Encore Documentation
Release 0.7.0

Enthought, Inc.

January 19, 2017

Contents

1 Packages 3

2 Prerequisites 5

3 Contents 7

4 Indices and tables 95

5 License 97

6 util.human_date module 99

7 concurrent.futures.enhanced_thread_pool_executor 101

Python Module Index 103

i

ii

Encore Documentation, Release 0.7.0

This package consists of a collection of core utility packages useful for building Python applications. This package is
intended to be at the bottom of the software stack and have zero required external dependencies aside from the Python
Standard Library.

Contents 1

Encore Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Packages

Events: A package implementing a lightweight application-wide Event dispatch system. Listeners can subscribe to
events based on Event type or by filtering on event attributes. Typical uses include UI components listening to low-
level progress notifications and change notification for distributed resources.

Storage: Abstract base classes and concrete implementations of a basic key-value storage API. The API is intended to
be general purpose enough to support a variety of local and remote storage systems.

Concurrent: A package of tools for handling concurrency within applications.

Terminal: Some utilities for working with text-based terminal displays.

3

Encore Documentation, Release 0.7.0

4 Chapter 1. Packages

CHAPTER 2

Prerequisites

• Python >= 2.7 or Python >= 3.4

• Sphinx, graphviz, pydot (documentation build)

• Some optional modules have dependencies on:

– Requests (http://docs.python-requests.org/en/latest/)

– Futures (https://code.google.com/p/pythonfutures/)

5

http://docs.python-requests.org/en/latest/
https://code.google.com/p/pythonfutures/

Encore Documentation, Release 0.7.0

6 Chapter 2. Prerequisites

CHAPTER 3

Contents

3.1 Events

The encore.events module provides a unified event system for application-level events. This is intended to be
distinct from the event systems provided by UI toolkits or Traits, although there is nothing stopping an implementation
from using such for a back-end.

3.1.1 Contents

Usage

The encore.events package provides a fairly straightforward event dispatcher.

Event Classes

Basic filtering is based upon the class of the event, so most users will want to define their own set of event classes, but
a number of standard BaseEvent subclasses are provided by the module. An event class can be as simple as:

from encore.events.api import BaseEvent

class SaveEvent(BaseEvent):
""" Event generated when a file is saved

Attributes

directory : path

The directory that the file that was saved in.
filename : string

The name of the file that was saved.

"""

The BaseEvent‘s __init__() method takes any additional keyword arguments it is supplied, and adds them as
attributes on the object. Every event has a source object which is the object which generated the event. You can create
an instance of an event like so:

event = SaveEvent(source=obj, directory='foo/bar', filename='baz.txt')

Because filtering of events respects the class heirarchy of events, you will frequently want to define some abstract base
classes to assist with filtering:

7

Encore Documentation, Release 0.7.0

from encore.events.api import BaseEvent

class FileEvent(BaseEvent):
""" Event generated when a file is operated upon

Attributes

directory : path

The directory that the file that was saved in.
filename : string

The name of the file that was saved.

"""

class OpenEvent(FileEvent):
pass

class SaveEvent(FileEvent):
pass

class DeleteEvent(FileEvent):
pass

In the above example, you will probably never generate an instance of FileEvent, but you may set up listeners for
such events.

Event Managers

To emit events, you will then need to ensure that your application has a (usually unique) event manager to handle the
dispatch of events. Creating an event manager is straightforward:

from encore.events.api import EventManager

event_manager = EventManager()

More typically you will have some sort of global application state object that is responsible for managing things like
event managers, and then you might use it as follows:

import os
from uuid import uuid4
from encore.events.api import EventManager, ProgressManager
from .app_events import SaveEvent

class App(object):
def __init__(self):

self.event_manager = EventManager()

class File(object):
def __init__(self, app, directory, filename, data=''):

self.app = app
self.directory = directory
self.filename = filename
self.data = data

def save(self):
event_manager = self.app.event_manager
path = os.path.join(self.directory, self.filename)

8 Chapter 3. Contents

Encore Documentation, Release 0.7.0

op_id = uuid4()
try:

with open(path, 'wb') as fp:
steps = range(0, len(data), 2**20)
with ProgressManager(event_manager, self, op_id,

'Saving "%s"' % path, len(steps)) as progress:
for i, pos in enumerate(step):

fp.write(self.data[i:i+2**20])
progress('Saving "%s" (%d of %d bytes)' % (path, pos, len(data)),

step=i+1)
else:

event_manager.emit(SaveEvent(source=self, directory=self.directory,
filename=self.filename))

Notice the use of the standard ProgressManager subclasses to generate progress update events while writing out
the data.

Listeners

A listener is simply a function which expects to be given an event instance and does something with it. For example,
we could write a listener which listens for SaveEvents and logs them to a logger:

import logging
import os

logger = logging.getLogger(__name__)

def save_logger(event):
path = os.path.join(event.directory, event.filename)
logger.info("Saved file '%s'" % path)

Once you have a listener, it can be connected to listen for particular classes of events via the event manager:

event_manager.connect(SaveEvent, save_logger)

Once the listener is connected, the save_logger() function will be called every time that a SaveEvent is emitted.
A listener can be explicitly disconnected by calling the disconnect() method of the event manager:

event_manager.disconnect(SaveEvent, save_logger)

A listener which is a bound method will be disconnected automatically if the underlying instance has been garbage-
collected, so in many instances you will not need to worry about explicitly disconnecting listeners.

In the above example, you would be more likely to want to log all FileEvents rather than save events. This could
be achieved by something like:

def file_event_logger(event):
path = os.path.join(event.directory, event.filename)
logger.info("%s: file '%s'" % (event.__class__.__name__, path))

event_manager.connect(FileEvent, file_event_logger)

This will call the file_event_logger() function every time that a subclass of FileEvent is emitted.

3.1. Events 9

Encore Documentation, Release 0.7.0

Listener Priority

It is possible to have multiple listeners on a particular class, and you may want some listeners to run before other
listeners. In particular, a listener may mark an event as “handled” in which case processing stops and all lower priority
listeners do not get to see the event.

For instance, in the above example, we might want to have both the save_logger() and
file_event_logger() active. In that case we don’t want to have save events logged twice, so we can
do the following:

def save_logger(event):
path = os.path.join(event.directory, event.filename)
logger.info("Saved file '%s'" % path)
event.mark_as_handled()

event_manager.connect(SaveEvent, save_logger, priority=100)
event_manager.connect(FileEvent, file_event_logger, piority=50)

By setting the priority of save_logger() higher than that of file_event_logger(), it will get called first,
and when it calls the event’s mark_as_handled() method then it will prevent any lower-priority events from
firing.

In the default event manager implementation, listeners of the same priority are called in the order in which they were
connected.

Filtering

On occassion a listener may only care about events from certain sources or matching certain attributes. The event
manager allows a filter to be specified when connecting a listener, so that the listener will only be called when the filter
is matched.

A filter is simply specified as a dictionary of event attribute, value pairs:

class Project(object):
def __init__(self, app, directory):

self.app = app
self.directory = directory
self._needs_compile = False
self._connect_listener()

def directory_listener(self, event):
self._needs_complie = True

def _connect_listener(self):
self.app.event_manager.connect(SaveEvent, self.directory_listener,

filter={'directory': self.directory})

In this example, a Project instance will have its directory_watcher() method called whenever a file is saved
in the directory specified by its directory attribute.

Example: Progress Bar

As an example which ties together the concepts which have been shown so far, we will write some code which displays
progress indications to standard out that look something like the following:

10 Chapter 3. Contents

Encore Documentation, Release 0.7.0

Saving "foo/bar/baz.txt":
[*************************************

We start with a class which is responsible for listening for the start of a progress event. For simplicty we will assume
that there will only be one progress sequence happening at any given time, so we will have the class instance hook up
a listener for ProgressStartEvents:

class ProgressDisplay(object):
def __init__(self, event_manager):

self.event_manager = event_manager
self.event_manager.connect(ProgressStartEvent, self.start_listener)

When a ProgressStartEvent occurs, then we will print out the initial text, and set up a listener for the
ProgressStepEvent and ProgressEndEvent event types:

def start_listener(self, event):
display initial text
sys.stdout.write(event.message)
sys.stdout.write(':\n[')
sys.stdout.flush()

create a ProgressWriter instance
writer = ProgressWriter(self, event.operation_id, event.steps)
self.writers[event.operation_id] = writer

connect listeners
self.event_manager.connect(ProgressStepEvent, writer.step_listener,

filter={'operation_id': event.operation_id})
self.event_manager.connect(ProgressEndEvent, writer.end_listener,

filter={'operation_id': event.operation_id})

The writer class handles listening for step and end events. The end event listener simply removes the writer object
from the display, which will cause it to eventually be garbage-collected and the listeners disconnected automatically:

class ProgressWriter(object):
def __init__(self, display, operation_id, steps):

self.display = display
self.operation_id = operation_id
self.steps = steps
self._count = 0
self._max = 75

def step_listener(self, event):
stars = int(round(float(event.step)/self.steps*self._max))
if stars > self._count:

sys.stdout.write('*'*(stars-self._count))
sys.stdout.flush()
self._count = stars

def end_listener(self, event):
if event.exit_state == 'normal':

sys.stdout.write(']\n')
sys.stdout.flush()

else:
sys.stdout.write('\n')
sys.stdout.write(event.exit_state.upper())
sys.stdout.write(': ')
sys.stdout.write(event.message)
sys.stdout.write('\n')

3.1. Events 11

Encore Documentation, Release 0.7.0

sys.stdout.flush()
del self.display[self.operation_id]

Advanced Features

Disabling Events The event manager has methods that allow code to temporarily disable events of a certain class.
These are accessed via the disable(), enable(), and is_enabled() methods. Disabling an event class will
also disable any of its subclasses, so:

event_manager.disable(BaseEvent)

will disable all events.

Enabled/disabled state is kept track of on a per-class basis, so after:

event_manager.disable(SaveEvent)
event_manager.disable(FileEvent)
event_manager.enable(FileEvent)

the SaveEvent events will still be disabled.

Pre- and Post-Emit Callbacks The event classes also have two hooks pre_emit() and post_emit() which
get called immediately before and immediately after dispatch to listeners. This potentially allows Event code to per-
form actions based upon interactions with listeners, such as having a post_emit() method which does something
sensible if an event is not handled. These hooks may also be of use for instrumenting and debugging code.

Threading By default events are processed on the thread that they were emitted on, and the connect(),
disconnect() and emit() methods should be thread-safe. Processing an event blocks that thread from further
work until all listeners have been called.

The emit() method has an optional argument block which if False will cause the emit method to create a worker
thread to perform the listener dispatch, and will return that thread from the function call.

Abstract Event Manager API

This module defines event manager class API.

The main class of the module is the BaseEventManager. Event managers are expected to implement the interface
as specified by BaseEventManager. A concrete implementation is present in the event_manager module.

class encore.events.abstract_event_manager.BaseEventManager
This abstract class defines the API for Event Managers.

connect(cls, func, filter=None, priority=0)
Add a listener for the event.

Parameters

• cls (class) – The class of events for which the listener is registered.

• func (callable) – A callable to be called when the event is emitted. The function
should expect one argument which is the event instance which was emitted.

• filter (dict) – Filters to match for before calling the listener. The listener is called
only when the event matches all of the filter .

Filter specification:

12 Chapter 3. Contents

http://docs.python.org/library/functions.html#callable
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

– key: string which is extended (. separated) name of an attribute of the event in-
stance.

– value: the value of the specified attribute.

If the attribute does not exist then the filter is considered failed and the listener is not
called.

• priority (int) – The priority of the listener. Higher priority listeners are called before
lower priority listeners.

Note

The filtering is added so that future optimizations can be done on specific events with large number of
handlers. For example there should be a fast way to filter key events to specific listeners rather than
iterating through all listeners.

disable(cls)
Disable the event from generating notifications.

Parameters cls (class) – The class of events which we want to disable.

disconnect(cls, func)
Disconnects a listener from being notified about the event’

Parameters

• cls (class) – The class of events for which the listener is registered.

• func (callable) – The callable which was registered for that class.

Raises KeyError - if func is not already connected.

emit(event, block=True)
Notifies all listeners about the event with the specified arguments.

Parameters

• event (instance of BaseEvent) – The BaseEvent instance to emit.

• block (bool) – Whether to block the call until the event handling is finished. If
block is False, the event will be emitted in a separate thread and the thread will be
returned, so you can later query its status or do wait() on the thread.

Note

Listeners of superclasses of the event are also called. Eg. a BaseEvent listener will also be notified
about any derived class events.

enable(cls)
Enable the event again to generate notifications.

Parameters cls (class) – The class of events which we want to enable.

is_enabled(cls)
Check if the event is enabled.

Parameters cls (class) – The class of events which we want check the status of.

3.1. Events 13

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#callable
http://docs.python.org/library/functions.html#bool

Encore Documentation, Release 0.7.0

Events

The module also provides the base class for all event objects.

class encore.events.abstract_event_manager.BaseEvent(source=None, **kwargs)
Base class for all events.

Parameters

• source (object) – The object which generated the Event.

• kwargs (dict) – Additional Event attributes which will be added to the Event object.
mark_as_handled()

Mark the event as handled so subsequent listeners are not notified.

post_emit()
Called after emitting an event.

Can be used any event specific functionality, post event validation etc.

pre_emit()
Called before emitting an event.

Can be used any event specific functionality, validation etc.

Event Manager Implementation

This module defines an event registry, notification and filtering class.

The main class of the module is the EventManager.

class encore.events.event_manager.EventManager
A single registry point for all application events.

connect(cls, func, filter=None, priority=0)
Add a listener for the event.

Parameters

• cls (class) – The class of events for which the listener is registered.

• func (callable) – A callable to be called when the event is emitted. The func-
tion should expect one argument which is the event instance which was emitted.

• filter (dict) – Filters to match for before calling the listener. The listener is
called only when the event matches all of the filter .

Filter specification:

– key: string which is name of an attribute of the event instance.

– value: the value of the specified attribute.

• priority (int) – The priority of the listener. Higher priority listeners are called
before lower priority listeners.

Note

Reconnecting an already connected listener will disconnect the old listener. This may have rammifications
in changing the filters and the priority.

14 Chapter 3. Contents

http://docs.python.org/library/functions.html#object
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#callable
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

The filtering is added so that future optimizations can be done on specific events with large number of
handlers. For example there should be a fast way to filter key events to specific listeners rather than
iterating through all listeners.

disable(cls)
Disable the event from generating notifications.

Parameters cls (class) – The class of events which we want to disable.

disconnect(cls, func)
Disconnects a listener from being notified about the event’

Parameters

• cls (class) – The class of events for which the listener is registered.

• func (callable) – The callable which was registered for that class.

Raises KeyError - if func is not already connected.

emit(event, block=True)
Notifies all listeners about the event with the specified arguments.

Parameters

• event (instance of BaseEvent) – The BaseEvent instance to emit.

• block (bool) – Whether to block the call until the event handling is finished. If
block is False, the event will be emitted in a separate thread and the thread will be
returned, so you can later query its status or do wait() on the thread.

Note

Listeners of superclasses of the event are also called. Eg. a BaseEvent listener will also be notified
about any derived class events.

enable(cls)
Enable the event again to generate notifications.

Parameters cls (class) – The class of events which we want to enable.

is_enabled(cls)
Check if the event is enabled.

Parameters cls (class) – The class of events which we want check the status of.

Progress Events

Events and helpers for managing progress indicators

class encore.events.progress_events.ProgressManager(event_manager=None,
source=None, operation_id=None,
message=’Performing operation’,
steps=-1, **kwargs)

Utility class for managing progress events

This class provides a context manager that will probably be sufficient in most use cases. The standard method
of invoking it will be something like:

3.1. Events 15

http://docs.python.org/library/functions.html#callable
http://docs.python.org/library/functions.html#bool

Encore Documentation, Release 0.7.0

with ProgressManager(event_manager, source, id, "Performing operation", steps) as progress:
for step in range(steps):

... do work ...
progress(step)

This pattern guarantees that the appropriate Start and Stop events are always emitted, even if there is an excep-
tion.

If finer-grained control is needed, the class also provides start(), step() and stop() methods that can be invoked
in when required. In particular, this pattern may be useful for more fine-grained exception reporting:

progress = ProgressManager(event_manager, source, id, "Performing operation", steps)
progress.start()
try:

for step in range(steps):
... do work ...
progress(step)

except ... as exc:
progress.end(message='Failure mode 1', end_state='warning')

except ... as exc:
progress.end(message='Failure mode 2', end_state='error')

except Exception as exc:
progress.end(message=str(exc), end_state='exception')

else:
progress.end(message='Success', end_state='normal')

StartEventType
(ProgressStartEvent subclass) The actual event class to use when emitting a start event. The default is
ProgressStartEvent, but subclasses may choose to override.

StepEventType
(ProgressStepEvent subclass) The actual event class to use when emitting a step event. The default is
ProgressStepEvent, but subclasses may choose to override.

EndEventType
(ProgressEndEvent subclass) The actual event class to use when emitting an end event. The default is
ProgressEndEvent, but subclasses may choose to override.

__init__(event_manager=None, source=None, operation_id=None, message=’Performing opera-
tion’, steps=-1, **kwargs)

Create a progress manager instance

Parameters

• event_manager (EventManager instance) – The event manager to use
when emitting events.

• source (any) – The object that is the source of the events.

• operation_id (any) – The unique identifier for the operation.

• message (string) – The default message to use for events which are emitted.

• steps (int) – The number of steps. If this is not known, use -1.

end(message=None, exit_state=’normal’, **extra_kwargs)
Emit a step event

By default creates an instance of StepEventType with the appropriate attributes.

Parameters

16 Chapter 3. Contents

http://docs.python.org/library/functions.html#any
http://docs.python.org/library/functions.html#any
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• message (str) – The message to be passed to the event’s constructor. By default
will use self.message.

• exit_state (one of normal, warning, error or exception) – The
exit_state of the event.

• extra_kwargs (dict) – Additional arguments to be passed through to the
event’s constructor.

start(**extra_kwargs)
Emit a start event

By default creates an instance of StartEventType with the appropriate attributes.

Parameters extra_kwargs (dict) – Additional arguments to be passed through to the
event’s constructor.

step(message=None, step=None, **extra_kwargs)
Emit a step event

By default creates an instance of StepEventType with the appropriate attributes.

Parameters

• message (str) – The message to be passed to the event’s constructor. By default
will use self.message.

• step (int) – The step number. By default keeps an internal step count, incre-
mented each time this method is called.

• extra_kwargs (dict) – Additional arguments to be passed through to the
event’s constructor.

class encore.events.progress_events.ProgressEvent(source=None, **kwargs)
Abstract base class for all progress events

This class is provided so that listeners can easily listen for any type ProgressEvent.

operation_id
A unique identifier for the operation being performed.

message
(string) A human-readable describing the operation being performed.

class encore.events.progress_events.ProgressStartEvent(source=None, **kwargs)
Event emitted at the start of an operation

operation_id
A unique identifier for the operation being performed.

message
(string) A human-readable describing the operation being performed.

steps
(int) The number of steps in the operation. If unknown or variable, use -1.

class encore.events.progress_events.ProgressStepEvent(source=None, **kwargs)
Event emitted periodically during an operation

operation_id
A unique identifier for the operation being performed.

message
(string) A human-readable describing the state of the operation being performed.

3.1. Events 17

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

step
(int) The count of the step. If unknown, use -1.

class encore.events.progress_events.ProgressEndEvent(source=None, **kwargs)
Event emitted at the end of an operation

operation_id
A unique identifier for the operation that is finished.

message
(string) A human-readable describing the state of the operation that ended.

exit_state
(string) A constant describing the end state of the operation. One of normal, warning, error or
exception.

3.1.2 Indices and tables

• genindex

• modindex

• search

3.1.3 License

This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source
Initiative.

Unless otherwise noted:

Copyright (c) 2011, Enthought, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Enthought, Inc. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

18 Chapter 3. Contents

Encore Documentation, Release 0.7.0

3.1.4 util.human_date module

Copyright 2009 Jai Vikram Singh Verma (jaivikram[dot]verma[at]gmail[dot]com) Licensed under the Apache License,
Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

3.1.5 concurrent.futures.enhanced_thread_pool_executor

Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to PSF under a Contributor Agreement.

3.2 Storage

The encore.storage package provides an abstract API for key-value stores, as well as some reference implemen-
tations, utilities, and building-blocks for creating more complex stores from simple ones.

The API is both agnostic to the type of data being stored and the underlying data storage medium. Being agnostic to
the type of data permits the API to be used in appropriate situations other than the ones that we currently envision for
current Enthought projects, while being agnostic to the underlying storage mechanism permits the same code to be
used no matter how the data is stored - whether in memory, a filesystem, a web service, or a SQL or NoSQL database
- permitting greater flexibility in deployment depending on user needs.

All abstractions are leaky, so we don’t anticipate that this API will cover all possible functionality that a data store
could provide, but the hope is that the API provides a common language for the most fundamental operations, and a
baseline which can be extended as we find more commonalities in the data stores that we develop.

3.2.1 Contents

Key-Value Store Concepts

The key-value store API exposes an interface on top of whatever backend implementation is used by subclasses. This
permits code which requires access to a key-value store to use it in a uniform way without having to care about where
and how the data is stored. The API is also agnostic about what is being stored, and so while the key use case is for
egg repositories, potentially any data values can be stored in the key-value store.

Discussion

We have seen a common need throughout client and internal development efforts at Enthought for various ways of
persistently storing data and associated metadata and making it available within the applications we write. Over the
years, Enthought has implemented a number of different storage systems with similar general functionality; sometimes
even with multiple ones in the same project. The particular motivation which has prompted the creation of the storage
API, and the initial use-case is a refactor of the Enstaller project to provide a cleaner set of internal APIs.

When faced with a problem like this, it is tempting to start from the implementation level and build a solution to the
problem at hand (eg. “I need to store eggs, so I build an egg store”). In generalizing, it is then even more tempting to try
to replace existing implementations with a more generic implementation (eg. “I need to store eggs and apps and code
blocks both locally and remotely, so I build a NoSQL-backed data store server which I can run locally if I need to”).

3.2. Storage 19

http://www.apache.org/licenses/LICENSE-2.0

Encore Documentation, Release 0.7.0

However any generic implementation must make trade-offs, and the trade-offs may end up being inappropriate for
particular use cases (eg. “Now I need to have an in-memory code-block store for efficiency, and my store’s optimized
for remote access...”).

Egg Store

General Implementation

Code Block Store Configuration Store

Alternatively, it is tempting to start from the task that is being attempted (eg. “I need to store eggs, so I build an egg
store”) and then generalize the implementation (eg. “Now I need to store eggs remotely, so I’ll build a remote egg store,
but at least I’ll use the same API”). However, again the specifics of the implementation may make it inappropriate for
particular use cases (eg. “Now I need a code-block store, so I’ll wrap up my code-blocks as eggs and use an egg store...
but now they’re 100 times bigger than they need to be...”)

Egg Store API

Memory Store Disk Store HTTP Store Cached Store SQL Store

This storage API instead to simply provides an API through which data providers and data consumers can talk. The
API deliberately makes no assumptions about what is being stored (eg. eggs vs. code blocks) but also makes no
assumptions about how the data is stored (eg. in memory, on disk, in a database, through a remote server). This allows
developers to re-use code more efficiently by permitting them to choose the pieces that make sense for their particular
use case (eg. “I need an in-memory code-block store, so I’ll take my general code-block store logic which uses the
API, and my in-memory store logic which implements the API, and join them together”). Not every combination may
make sense (an in-memory egg store is probably a bad idea, for example), but the ability to pick and choose allows a
great deal of flexibility.

20 Chapter 3. Contents

Encore Documentation, Release 0.7.0

Egg Store

Key-Value Store API

Memory Store Disk Store HTTP Store Cached Store SQL Store

Code Block Store Configuration Store

This also reflects the reality that developers frequently do not have complete freedom to choose the best possible data
store solution due to external constraints. By writing to the storage API, you have the opportunity to more easily re-use
components, as well as the possibility of later replacing the sub-optimal solution with a better one.

This approach also allows developers to write general connectors, adapters and other building blocks for repositories
which only use the API and don’t care about what is being stored. This should permit fast prototyping of functionality,
if nothing else, but in many cases this approach may be good enough for production code. For example, a generic
joined store could be written which takes a list of other stores which implement the API and when asked for data from
the store asks each store in sequence for the data until it finds what is requested. To code using the joined store, it
appears just like any other store, and the joined store doesn’t care how the stores it joins are implemented.

Keys

The keys of the key-value store are strings, and the key-value store API makes no assumptions about what the strings
represent or any structure they might have. In particular keys are assumed to be case sensitive and may include
arbitrary characters, so key-value store implementations should be careful to handle any issues which may arise if the
underlying data store is case insensitive and has special characters which need to be escaped.

Each key has associated with it a collection of metadata and some binary data. The key-value store API makes no
assumptions about how the metadata and data is serialized.

Values

The values stored in the key-value store consist of two parts, a binary data stream and a metadata dictionary. These
are encapsulated into a light-weight data-structure which can hold additional implementation-specific information.

In particular, implementations should expose attributes or properties ‘size’, ‘created’ and ‘modified’ which proved
the number of bytes in the data stream, the creation time of the key, and the most recent modification time of the
key. These additional attributes are primarily provided for internal use and to assist composition and replication of
key-value stores.

The Value should contain enough information to extract the data and metadata, but does not have to actually open
those resources until they are requested.

For writable repositories, data should be supplied to keys via a Value subclass, if possible. This allows copying
between repositories using code like:

3.2. Storage 21

Encore Documentation, Release 0.7.0

repo1.set(key, repo1.get(key))

or copying between keys with code like:

repo.set(key1, repo.get(key2))

Since files are likely to be common targets for extracting data from values, or sources for data being stored, the
key-value store API provides utility methods to_file() and from_file(). Simple default implementations of
these methods are provided, but implementations of the key-value store API may be able to override these to be more
efficient, depending on the nature of the back-end data store.

For backwards compatibility, value objects express an API that makes them appear as a 2-tuple of (data, metadata).

Data

The binary data stored in the values is presented through the key-value store API as file-like objects which implement
at least read(), close(), __enter__() and __exit__() methods as well as having attributes which provide some amount of
information about the stream, such as length, last modification time, creation time, and so forth. Particular backends
may choose to provide additional attributes or implement additional methods as needed.

Frequently this will be a wrapper around a standard file, StringIO object, a urllib file-like object or other wrapper
about a socket. The read() method should accept an optional number of bytes to read, so that buffered reads can be
performed.

The key-value store API gives no special meaning to the bytes stored in the value. However care should be taken that
it is in fact bytes being stored, and not a (possibly unicode) string; in particular, if an actual file is being used it should
be opened in binary mode.

Metadata

Metadata should be representable as a dictionary whose keys are valid Python identifiers, and whose values can be
serialized into reasonable human-readable form (basically, you should be able to represent the dictionary as JSON,
XML, YAML, or similar in a clear and sane way, because some underlying datastore will).

Metadata can be retrieved via the get_metadata() method or as the second element of the tuple returned by
get(). Metadata can be set using set() or set_metadata() and existing metadata can be modified using
update_metadata() (similarly to the way that the update() method works for dictionaries).

There is nothing that ensures that metadata and the corresponding data are synchronised for a particular object. It is
up to the user of the API to ensure that the metadata for stored data is correct.

We currently make no assumptions about the metadata keys, but we expect conventions to evolve for the meanings
and format of particular keys. Given that this is generally thought of as a repository for storing eggs, the following
metadata keys are likely to be available:

type The type of object being stored (package, app, patch, video, etc.).

name The name of the object being stored.

version The version of the object being stored.

arch The architecture that the object being stored is for.

python The version of Python that the object being stored is for.

ctime The creation time of the object in the repository in seconds since the Unix Epoch.

mtime The last modification time of the object in the repository in seconds since the Unix Epoch.

22 Chapter 3. Contents

Encore Documentation, Release 0.7.0

size The size of the binary data in bytes.

Note that there is a difference in intent between the information stored in the metadata and the attributes on the value
object: value object attributes are controlled by the key-value store implementation, whereas metadata are completely
arbitrary from the point of view of the key-value store and are completely up to the user code as to what information
is stored.

Connecting and Disconnecting

Before a store can be used, its connect() method must be called to allow any long-lived resources to be allocated
and prepared for use, and to optionally handle any authentication that might be required.

Conversely, the store’s disconnect() method should be called when code is done with the store, allowing it to
release any long-lived resources.

Querying

A very simple querying API is provided by default. The query() method simply takes a collection of keyword
arguments and interprets them as metadata keys and values. It returns all the keys and corresponding metadata that
match all of the supplied arguments. query_keys() does the same, but only returns the matching keys.

Subclasses may choose to provide more sophisticated querying mechanisms.

Transactions

The base abstract key-value store has no notion of transactions, since we want to handle the read-only and simple
writer cases efficiently. However, if the underlying storage mechanism has the notion of a transaction, this can be
encapsulated by writing a context manager for transactions. The transaction() method returns an instance of the
appropriate context manager.

Events

All implementations should have an event manager attribute, and may choose to emit appropriate events. This is
of particular importance during long-running interactions so that progress can be displayed. This also provides a
mechanism that an implementation can use to inform listeners that new objects have been added, or the store has been
otherwise modified.

Notes For Writing An Implementation

Metadata is really an index In terms of traditional database design, things that you are exposing in metadata are
really indexed columns. If you are implementing a store which needs fast querying, you may want to look at
how traditional databases do indexing to guide your data structure choices.

Determine the Single Points of Truth Every piece of data should have a single point of truth - a canonical place
which holds the correct value. This is particularly true for metadata.

Testing There are standard test suites that can validate that a store is working as expected by the API. When writing
an implementation of the API, you can subclass the tests and write appropriate setUp and tearDown methods
that will put the store into the correct state.

3.2. Storage 23

Encore Documentation, Release 0.7.0

Usage

The key-value store API gives a common API that can be used with a variety of different backends to provide a
consistent interface for storage. If used correctly you can swap out the backend used with little or no modification of
the user code.

Creating and Connecting

Before you use a store, you need to create an instance of the appropriate type, and then connect to it, possibly authen-
ticating if that is required. For example, the following connects to a read-only remote store via HTTP, using HTTP
Authentication:

from encore.events.api import EventManager
from encore.storage.static_url_store import StaticURLStore

event_manager = EventManager()
store = StaticURLStore(event_manager, 'http://localhost:8080/', 'data', 'index.json')
store.connect(credentials={'username': 'alibaba', password: 'Open Sesame'})

At this point the store is ready to use. You can check to see whether the store has connected using the
is_connected() method. When you are finished with a store, you should call its disconnect() method
to allow it to cleanly release any resources it may be using, such as database connections.

Reading

To read from a store, you use one of the get() methods:

value = store.get('my_document')
datastream = value.data
metadata = value.metadata

In this case datastream is a file-like object that streams bytes:

data = datastream.read()
print data

More likely you will have used some sort of serialization format like XML, JSON or YAML to store your data in the
document, so instead you can do:

import json
data = json.load(datastream)

If the data is raw bytes to store into a numpy array, you can do something like this:

import numpy
data = datastream.read()
dtype = numpy.int32
size = len(data)/dtype().nbytes
arr = numpy.empty(shape=size, dtype=dtype)
arr.data[:] = data

24 Chapter 3. Contents

Encore Documentation, Release 0.7.0

The read() method supports buffered reads if your data is larger than would comfortably fit into memory.

If you need to support random-access streaming, the value API also supports a range(start, end)() method
that return the requested bytes as a readable stream.

The metadata stores auxilliary information about the data that is stored in the key. It is a dictionary of reasonably
serializable values (frequently it will serialize to JSON or similar format):

print 'Document title:', metadata['title']
print 'Document author:', metadata['author']
print 'Document encoding:', metadata['encoding']

checksum
import hashlib
assert hashlib.sha1(document.read()).digest() == metadata['sha1']

What metadata is stored is completely dependent on the use-case for the key-value store: the key-value store makes
no assumptions.

If you try to read a key which doe not exist, then the store will raise a KeyError. If you want to see whether or not a
particular key is populated, you can use the exists() method.

Frequently you will only be interested in the data or the metadata, not both. For these cases there are methods
get_data() and get_metadata() which return the appropriate entities. For metadata, if you are only interested
in the values of some of the dictionary keys, you can supply an additional argument select which will restrict the
returned keys to this subset of all the keys:

author_info = store.get_metadata(‘document’, select=[’author’, ‘organization’])

It is very common that you either want to extract the stream of bytes from a value into a Python bytes object (ie. a
string in Python 2, as opposed to unicode) or into a file on the local filesystem. Two utility methods to_file() and
to_bytes() are provided which perform these operations. If the data source is larger than will comfortably fit into
memory (particularly for to_file()) you can supply an optional buffer size:

store.to_file('document', 'local_document.txt', buffer=8096)

Querying

Frequently you want to find keys whose metadata match certain criteria. The key-value store API gives a simple query
mechanism that permits this sort of matching:

for key, metadata in store.query(author='alibaba', organization='40 Thieves'):
print key, ':', metadata['title']

This will print the key and title of all documents which have an author key with value ’alibaba’ and an
organization key with value ’40 Thieves’. The current API only permits querying for exact matches and
matching all of the query terms. More complex queries would need to be performed on an ad-hoc basis on top of this
API.

If all the user is concerned with is which keys match, there is an alternative method query_keys():

for key in store.query_keys(author='alibaba', organization='40 Thieves'):
print key

To iterate over all the keys in a store, you can simply call query_keys() with no arguments:

3.2. Storage 25

Encore Documentation, Release 0.7.0

for key in store.query_keys():
print key

Finally, as a useful utility, you can use glob-style matching on the keys using the glob() method:

for key in store.glob('*.jpg'):
print key

Writing

Most, but not all, stores also allow you to write data to keys. The basic method is set() which is the inverse of
get(). It expects a file-like object with a read() method that can do buffering, and a dictionary of metadata as
arguments:

from cStringIO import StringIO

data = StringIO("Hello World")
metadata = {'title': "Greeting", 'author': 'alibaba'}
store.set('hello', (data, metadata))

As with reading, there are methods set_data() and set_metadata() that permit you to set just one of the two
parts of the value, and there are utility methods from_bytes() and from_file() that populate the data of a key
from either a byte string or a binary file. The latter two methods do not set any metadata: that must be done manually
if needed.

If you want to add to the metadata without overwriting it, there is a convenience method update_metadata()
method that will update the metadata dictionary in mych the same way that the standard Python dictionary’s update
method works.

You can delete a key with the delete() method:

store.delete('hello')

Transactions

The key-value store API does not assume that the underlying storage mechanism has a notion of transactions, but if
it does then it can be supported by the key-value store. Transactions are handled by context managers and the with
statement:

with store.transaction('Setting some values'):
store.set('key1', (data1, metadata1))
store.set('key2', (data2, metadata2))

If any exception were to occur in the with statement, the context manager will ensure that the transaction gets rolled
back. Otherwise the transaction will be committed when the with statement finishes.

Transactions are re-entrant, so it is safe to do the following:

def add_keypair(keypair):
with store.transaction('Adding keypair'):

store.set(keypair.key1, (keypair.data1, keypair.metadata1))
store.set(keypair.key2, (keypair.data2, keypair.metadata2))

26 Chapter 3. Contents

Encore Documentation, Release 0.7.0

def add_many_keypairs(keypairs):
with store.transaction('Adding many keypairs'):

for keypair in keypairs:
add_keypair(keypair)

The transaction in the function is effectively ignored, with only the outermost transaction applying.

The “Multi” Methods

For convenience there are a collection of methods prefixed by “multi”, such as multiget() and
multiset_data(), which perform the specified operations on a collection of keys at once. If transactions are
available, then these will be done as a single transaction.

Events

The various stores use the Encore event system, which is why the stores must be supplied with a reference to an
EventManager instance. The events which are emitted are referenced in the documentation for each method.

Key-Value Store API

This module specifies the key-value store API for the various package management and installation systems that are
in use at Enthought and our clients.

The key-value store API exposes an interface on top of whatever backend implementation is used by subclasses. This
permits code which requires access to a key-value store to use it in a uniform way without having to care about where
and how the data is stored. The API is also agnostic about what is being stored, and so while the key use case is for
egg repositories, potentially any data values can be stored in the key-value store.

class encore.storage.abstract_store.Value
Abstract base class for file-like objects used by Key-Value stores
size [int] The size of the data in bytes, or None if a continuous stream or unknown.
created [timestamp] The creation time of the key as a floating point UTC timestamp in seconds after the Unix

Epoch.
modified [timestamp] The modification time of the key as a floating point UTC timestamp in seconds after the

Unix Epoch.
data

The byte stream of data contained in the value

iterdata(buffer_size=1048576, progress=None)
Return an iterator over the data stream

metadata
The metadata dictionary of the value

permissions
The permissions dictionary of the value

This is only available if the user has ownership privileges for the key. Because different stores have
different permission conventions, this will not be used when setting a value.

range(start=None, end=None)
Return a stream with a range of bytes from the data

class encore.storage.abstract_store.AbstractReadOnlyStore
Abstract base class for read-only Key-Value Store API

3.2. Storage 27

Encore Documentation, Release 0.7.0

This class implements some of the API so that it can be used with super() where appropriate.

event_manager
Every store is assumed to have an event_manager attribute which implements the BaseEventManager
API.

connect(credentials=None)
Connect to the key-value store, optionally with authentication

This method creates or connects to any long-lived resources that the store requires.

Parameters credentials – An object that can supply appropriate credentials to to au-
thenticate the use of any required resources. The exact form of the credentials is
implementation-specific, but may be as simple as a (username, password) tu-
ple.

Raises AuthorizationError - If the credentials are not valid, this error will be raised.

disconnect()
Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the store requires.

exists(key)
Test whether or not a key exists in the key-value store

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns exists (bool) - Whether or not the key exists in the key-value store.

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns value (instance of Value) - An instance of a Value subclass which holds references
to the data, metadata and other information about the key.

Raises KeyError - If the key is not found in the store, a KeyError is raised.

get_data(key)
Retrieve a stream from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store.

Raises KeyError - This will raise a key error if the key is not present in the store.

get_data_range(key, start=None, end=None)
Retrieve a partial stream from a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• start (int or None) – The first byte to return

• end (int or None) – The last byte of to return

28 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store.

Raises KeyError - This will raise a key error if the key is not present in the store.

get_metadata(key, select=None)
Retrieve the metadata for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the result. If unspecified, then return the entire metadata dictionary.

Returns metadata (dict) - A dictionary of metadata associated with the key. The dictionary
has keys as specified by the select argument. If a key specified in select is not present
in the metadata, then it will not be present in the returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

glob(pattern)
Return keys which match glob-style patterns

Parameters pattern (string) – Glob-style pattern to match keys with.

Returns result (iterable) - A iterable of keys which match the glob pattern.

is_connected()
Whether or not the store is currently connected

Returns connected (bool) - Whether or not the store is currently connected.

multiget(keys)
Retrieve the data and metadata for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_data(keys)
Retrieve the data for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of file-like) - An iterator of file-like data objects corresponding to
the keys.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_metadata(keys, select=None)
Retrieve the metadata for a collection of keys in the key-value store.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the results. If unspecified, then return the entire metadata dictionary.

3.2. Storage 29

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

Returns metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated
with the key. The dictionaries have keys as specified by the select argument. If a
key specified in select is not present in the metadata, then it will not be present in the
returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

query(select=None, **kwargs)
Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of metadata for the key-value store.

Parameters

• select (iterable of strings or None) – An optional list of metadata
keys to return. If this is not None, then the metadata dictionaries will only have
values for the specified keys populated.

• kwargs – Arguments where the keywords are metadata keys, and values are pos-
sible values for that metadata item.

Returns result (iterable) - An iterable of (key, metadata) tuples where metadata matches all
the specified values for the specified metadata keywords. If a key specified in select is
not present in the metadata of a particular key, then it will not be present in the returned
value.

query_keys(**kwargs)
Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially more efficiently imple-
mented.

Parameters kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

Returns result (iterable) - An iterable of key-value store keys whose metadata matches all
the specified values for the specified metadata keywords.

to_bytes(key, buffer_size=1048576)
Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a bytes object. The default implementation uses the get() method to-
gether with chunked reads from the returned data stream and join.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Returns bytes - The contents of the file-like object as bytes.

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to extracting the data.

30 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is extracted.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after extracting the data.

to_file(key, path, buffer_size=1048576)
Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a path in the filesystem. The default implementation uses the get()
method together with chunked reads from the returned data stream to the disk.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to store the data to.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to disk.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to disk.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to disk.

class encore.storage.abstract_store.AbstractStore
Abstract base class for Key-Value Store API

This class implements some of the API so that it can be used with super() where appropriate.

event_manager
Every store is assumed to have an event_manager attribute which implements the BaseEventManager
API.

delete(key)
Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Events StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key.

from_bytes(key, data, buffer_size=1048576)
Efficiently store a bytes object as the data associated with a key.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from a bytes object to the underlying data store. The default implementation uses the set() method together
with a cStringIO.

Parameters

3.2. Storage 31

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (bytes) – The data as a bytes object.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

from_file(key, path, buffer_size=1048576)
Efficiently read data from a file into a key in the key-value store.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from a path in the filesystem to the underlying data store. The default implementation uses the set()
method together with chunked reads from the disk which are fed into the data stream.

This makes no attempt to set metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to read the data from.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

multiset(keys, values, buffer_size=1048576)
Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and values have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• values (iterable of (file-like, dict) tuples) – An iterator
that provides the (data, metadata) pairs for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

32 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

multiset_data(keys, datas, buffer_size=1048576)
Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and datas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• datas (iterable of file-like objects) – An iterator that provides
the data file-like objects for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_metadata(keys, metadatas)
Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiupdate_metadata(keys, metadatas)
Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

3.2. Storage 33

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

set(key, value, buffer_size=1048576)
Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• value (instance of Value) – An instance of a Value subclass.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_data(key, data, buffer_size=1048576)
Replace the data for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (file-like) – A readable file-like object the that provides stream of data
from the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

34 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

transaction(notes)
Provide a transaction context manager

Implementations which have no native notion of transactions may choose not to implement this.

This method provides a context manager which creates a data store transaction in its __enter__() method,
and commits it in its __exit__() method if no errors occur. Intended usage is:

with repo.transaction("Writing data..."):
everything written in this block is part of the transaction
...

If the block exits without error, the transaction commits, otherwise the transaction should roll back the
state of the underlying data store to the start of the transaction.

Parameters notes (string) – Some information about the transaction, which may or
may not be used by the implementation.

Returns transaction (context manager) - A context manager for the transaction.

Events

• StoreTransactionStartEvent - This event should be emitted on entry into the
transaction.

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreTransactionEndEvent - This event should be emitted on successful conclu-
sion of the transaction, before any Set or Delete events are emitted.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set during the transaction.

• StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key for all deleted keys.

update_metadata(key, metadata)
Update the metadata for a given key in the key-value store.

3.2. Storage 35

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

This performs a dictionary update on the existing metadata with the provided metadata keys and values

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

class encore.storage.abstract_store.AbstractAuthorizingStore
Abstract base class for Key-Value Store API with permissioning

This class implements some of the API so that it can be used with super() where appropriate.

Permission information is available only to authenticated users who are designated as owners of a particular key.
Permissions are simply strings representing some right that the store allows, the only required permission being
‘owned’.

Each permission has a set of tags which are granted that permission. A tag represents a user, group or role that
will be granted that permission. The meaning of tags is also store dependent: a filesystem-based store may have
tags for ‘user’, ‘group’ and ‘other’; while a web-based store may derive its tags from a role-based authentication
system.

event_manager
Every store is assumed to have an event_manager attribute which implements the BaseEventManager
API.

get_permissions(key)
Return the set of permissions the user has

Parameters key (str) – The key for the resource which you want to know the permissions.

Returns permissions (dict of str: set of str) - A dictionary whose keys are the permissions
and values are sets of tags which have that permission.

Raises

• KeyError - This error will be raised if the key does not exist or the user is not
authorized to see it.

• AuthorizationError - This error will be raised if user is authorized to see the key,
but is not an owner.

set_permissions(key, permissions)
Set the permissions on a key the user owns

Parameters

• key (str) – The key for the resource which you want to know the permissions.

• permissions (dict of str: set of str) – A dictionary whose keys
are the permissions and values are sets of tags which have that permission. There
must be an ‘owned’ permission with at least one tag.

Raises

• KeyError - This error will be raised if the key does not exist or the user is not
authorized to see it.

• AuthorizationError - This error will be raised if user is authorized to see the key,
but is not an owner.

36 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

Encore Documentation, Release 0.7.0

update_permissions(key, permissions)
Add permissions on a key the user owns

The tags provided in the permissions dictionary will be added to the existing set of tags for each permis-
sion.

Parameters

• key (str) – The key for the resource which you want to know the permissions.

• permissions (dict of str: set of str) – A dictionary whose keys
are the permissions and values are sets of tags which have that permission.

Raises

• KeyError - This error will be raised if the key does not exist or the user is not
authorized to see it.

• AuthorizationError - This error will be raised if user is authorized to see the key,
but is not an owner.

user_tag
A tag that represents the user

Events

The Storage API generates events using the Encore Event API. This module defines the event classes that are required
aby the abstract API.

Event Inheritance Diagram

The following diagram shows the inheritance heirarchy of the various Event subclasses defined in this module. When
listening for events, you may want to listen on appropriate superclasses.

BaseEvent

ProgressEvent

StoreEvent

ProgressEndEvent StoreProgressEndEvent

ProgressStartEvent

ProgressStepEvent

StoreProgressEvent

StoreProgressStartEvent

StoreProgressStepEvent

StoreDeleteEvent

StoreModificationEvent StoreSetEvent

StoreUpdateEvent

StoreKeyEvent

StoreTransactionEvent

StoreTransactionEndEvent

StoreTransactionStartEvent

Storage Events This module contains asbtract and concrete Event subclasses that support the Storage API.

class encore.storage.events.StoreEvent(source=None, **kwargs)
An abstract base class for events generated by a Key-Value Store

3.2. Storage 37

http://docs.python.org/library/functions.html#str

Encore Documentation, Release 0.7.0

source
(Store instance) The key-value store which generated the event.

class encore.storage.events.StoreKeyEvent(source=None, **kwargs)
An abstract base class for events related to a particular key in the store. This should provide the key and metadata
(if available) of the modified key.

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

class encore.storage.events.StoreModificationEvent(source=None, **kwargs)
An abstract base class for modification events generated by a Key-Value Store

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

action
(string) The modification action that was performed. One of ‘set’, ‘update’ or ‘delete’.

class encore.storage.events.StoreSetEvent(source=None, **kwargs)
An event generated when a value is set into a Key-Value Store

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

action
(‘set’) The modification action that was performed.

class encore.storage.events.StoreUpdateEvent(source=None, **kwargs)
An event generated when a value is updated into a Key-Value Store

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

action
(‘update’) The modification action that was performed.

class encore.storage.events.StoreDeleteEvent(source=None, **kwargs)
An event generated when a value is deleted into a Key-Value Store

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

action
(‘delete’) The modification action that was performed.

class encore.storage.events.StoreProgressEvent(source=None, **kwargs)
Abstract base class for ProgressEvents generated by a Key-Value Store

38 Chapter 3. Contents

Encore Documentation, Release 0.7.0

operation_id
A unique identifier for the operation being performed.

message
(string) A human-readable describing the operation being performed.

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

class encore.storage.events.StoreProgressStartEvent(source=None, **kwargs)

operation_id
A unique identifier for the operation being performed.

message
(string) A human-readable describing the operation being performed.

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

steps
(int) The number of steps in the operation. If unknown or variable, use -1.

class encore.storage.events.StoreProgressStepEvent(source=None, **kwargs)

operation_id
A unique identifier for the operation being performed.

message
(string) A human-readable describing the state of the operation being performed.

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

step
(int) The count of the step. If unknown, use -1.

class encore.storage.events.StoreProgressEndEvent(source=None, **kwargs)

operation_id
A unique identifier for the operation that is finished.

message
(string) A human-readable describing the state of the operation that ended.

key
(string) The key which is involved in the event.

metadata
(dict) The metadata of the key which is involved in the event.

3.2. Storage 39

Encore Documentation, Release 0.7.0

exit_state
(string) A constant describing the end state of the operation. One of normal, warning, error or
exception.

Utils

Utilities for key-value stores.

File-like Interface Utilities

These utilities help with the management of file-like objects. In particular buffer_iterator() is of particular
use, as it produces an iterator which generates chunks of bytes in the file-like object which permits memory-efficient
streaming of the data. This is preferred over reading in all the data and then processing it if the data is even moderately
big.

The BufferIteratorIO class is a class whick provides a file-like API around a buffer iterator. This is particularly
useful for Stores which wrap another store and implementing streaming filters on the data.

class encore.storage.utils.BufferIteratorIO(iterator)
A file-like object based on an iterable of buffers

This takes an iterator of bytes objects, such as produced by the buffer_iterator function, and wraps it in a file-like
interface which is usable with the store API.

This uses less memory than a StringIO, at the cost of some flexibility.
Parameters iterator (iterator of bytes objects) – An iterator that produces a

bytes object on each iteration.
read(buffer_size=1048576)

Read at most buffer_size bytes, returned as a string.

encore.storage.utils.buffer_iterator(filelike, buffer_size=1048576, progress=None,
max_bytes=None)

Return an iterator of byte buffers

The buffers of bytes default to the provided buffer_size. This is a useful method when copying one data stream
to another.

Parameters

• filelike (a file-like object) – An object which implements the
read(buffer_size)() method.

• buffer_size (int) – The number of bytes to read at a time.

• progress (callable) – A callback for progress indication. A StoreProgressMan-
ager instance inside a with block would be appropriate, but anthing that takes a step
parameter which is the total number of bytes read so far will work.

• max_bytes (int) – The maximum number of bytes to return.

encore.storage.utils.tee(filelike, n=2, buffer_size=1048576)
Clone a filelike stream into n parallel streams

This uses itertools.tee and buffer iterators, with the corresponding cautions about memory usage. In general it
should be more memory efficient than pulling everything into memory.

Parameters

• filelike (a file-like object) – An object which implements the
read(buffer_size)() method.

40 Chapter 3. Contents

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#callable
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• n (int) – The number of filelike streams to produce.

• buffer_size (int) – The number of bytes to read at a time.

Transaction Support

These are two simple context managers for transactions. The DummyTransactionContext should be used by
Store implementations which have no notion of a transaction. The SimpleTransactionContext is a complete
transaction manager for implementations with begin/commit/rollback semantics.

class encore.storage.utils.DummyTransactionContext
A dummy class that can be returned by stores which don’t support transactions

This class guarantees that there is only one transaction object for each store instance.
Parameters store (key-value store instance) – The store that this transaction context

is associated with.

class encore.storage.utils.SimpleTransactionContext
A simple class that adds support for simple transactions

This is a base class that ensures transactions are appropriately handled in terms of nesting and event generation.
Subclasses should override the start, commit and rollback methods to perform appropriate implementation-
specific actions.

This class correctly handles nested transactions by ensuring that each store has precisely one active transaction
context and by tracking the number of times the context has been entered and exited. The transaction is only
committed once the top-level context has exited.

Parameters store (key-value store instance) – The store that this transaction context
is associated with.

begin()
Begin a transaction

By default, this calls the store’s _begin_transaction method. Override in subclasses if you need
different behaviour.

commit()
Commit a transaction

By default, this calls the store’s _commit_transaction method. Override in subclasses if you need
different behaviour.

rollback()
Roll back a transaction

By default, this calls the store’s _rollback_transaction method. Override in subclasses if you
need different behaviour.

Event Support

class encore.storage.utils.StoreProgressManager(event_manager=None, source=None, op-
eration_id=None, message=’Performing
operation’, steps=-1, **kwargs)

encore.events.progress_events.ProgressManager subclass that generates
encore.storage.events.StoreProgressEvent instances

EndEventType
alias of StoreProgressEndEvent

3.2. Storage 41

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

StartEventType
alias of StoreProgressStartEvent

StepEventType
alias of StoreProgressStepEvent

Implementations

Memory Store

This is a simple implementation of the key-value store API that lives entirely in memory. Data and metadata are stored
in dictionaries. This is not optimized in any way to reduce memory usage.

This class is provided in part as a sample implementation of the API.

class encore.storage.dict_memory_store.DictMemoryStore
Dictionary-based in-memory Store

This is a simple implementation of the key-value store API that lives entirely in memory. This uses a dictionary
of StringValue objects to store all relevant information about an object - data and metadata are stored in private
attributes.

The streams returned by data methods are cStringIO.StringIO objects.
Parameters event_manager – An object which implements the BaseEventManager API.

connect(credentials=None)
Connect to the key-value store

Parameters credentials (None) – This store does not authenticate, and has no external
resources, so credentials are ignored.

delete(key)
Delete a key from the repsository.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Events StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key.

disconnect()
Disconnect from the key-value store

This store does not authenticate, and has no external resources, so this does nothing

exists(key)
Test whether or not a key exists in the key-value store

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns exists (bool) - Whether or not the key exists in the key-value store.

from_bytes(key, data, buffer_size=1048576)
Efficiently read data from a bytes object into a key in the key-value store.

This makes no attempt to set metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

42 Chapter 3. Contents

http://docs.python.org/library/constants.html#None
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

• data (bytes) – The data as a bytes object.

• buffer_size (int) – This is ignored.

from_file(key, path, buffer_size=1048576)
Efficiently read data from a file into a key in the key-value store.

This makes no attempt to set metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to read the data from.

• buffer_size (int) – This is ignored.

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns

• data (file-like) - A readable file-like object that provides stream of data from the
key-value store

• metadata (dictionary) - A dictionary of metadata for the key.

Raises KeyError - If the key is not found in the store, a KeyError is raised.

get_data(key)
Retrieve a stream from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store.

get_metadata(key, select=None)
Retrieve the metadata for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the result. If unspecified, then return the entire metadata dictionary.

Returns metadata (dict) - A dictionary of metadata associated with the key. The dictionary
has keys as specified by the metadata_keys argument.

Raises KeyError - This will raise a key error if the key is not present in the store, and if any
metadata key is requested which is not present in the metadata.

glob(pattern)
Return keys which match glob-style patterns

Parameters pattern (string) – Glob-style pattern to match keys with.

Returns result (iterable) - A iterable of keys which match the glob pattern.

3.2. Storage 43

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

is_connected()
Whether or not the store is currently connected

Returns connected (bool) - Whether or not the store is currently connected.

multiget(keys)
Retrieve the data and metadata for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_data(keys)
Retrieve the data for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of file-like) - An iterator of file-like data objects corresponding to
the keys.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_metadata(keys, select=None)
Retrieve the metadata for a collection of keys in the key-value store.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the results. If unspecified, then return the entire metadata dictionary.

Returns metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated
with the key. The dictionaries have keys as specified by the select argument. If a
key specified in select is not present in the metadata, then it will not be present in the
returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiset(keys, values, buffer_size=1048576)
Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and values have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• values (iterable of (file-like, dict) tuples) – An iterator
that provides the (data, metadata) pairs for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

44 Chapter 3. Contents

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_data(keys, datas, buffer_size=1048576)
Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and datas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• datas (iterable of file-like objects) – An iterator that provides
the data file-like objects for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_metadata(keys, metadatas)
Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

3.2. Storage 45

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiupdate_metadata(keys, metadatas)
Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

query(select=None, **kwargs)
Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of metadata for the key-value store.

Parameters

• select (iterable of strings or None) – An optional list of metadata
keys to return. If this is not None, then the metadata dictionaries will only have
values for the specified keys populated.

• kwargs – Arguments where the keywords are metadata keys, and values are pos-
sible values for that metadata item.

Returns result (iterable) - An iterable of keys, metadata tuples where metadata matches all
the specified values for the specified metadata keywords.

query_keys(**kwargs)
Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially more efficiently imple-
mented.

Parameters kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

Returns result (iterable) - An iterable of key-value store keys whose metadata matches all
the specified values for the specified metadata keywords.

set(key, value, buffer_size=1048576)
Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

46 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

• value (tuple of file-like, dict) – A pair of objects, the first being a
readable file-like object that provides stream of data from the key-value store. The
second is a dictionary of metadata for the key.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_data(key, data, buffer_size=1048576)
Replace the data for a given key in the key-value store.

If the key does not already exist, it tacitly creates an empty metadata object.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (file-like) – A readable file-like object the that provides stream of data
from the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata. If the key does not already
exist, it tacitly creates an empty data object.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

3.2. Storage 47

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

to_bytes(key, buffer_size=1048576)
Efficiently store the data associated with a key into a bytes object.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• buffer_size (int) – This is ignored.

to_file(key, path, buffer_size=1048576)
Efficiently store the data associated with a key into a file.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to store the data to.

• buffer_size (int) – This is ignored.

transaction(notes)
Provide a transaction context manager

This class does not support transactions, so it returns a dummy object.

Parameters notes (string) – Some information about the transaction, which is ignored
by this implementation.

update_metadata(key, metadata)
Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the provided metadata keys and values

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

Sqlite Store

This is a simple implementation of the key-value store API that lives in a sqlite database. Each key is stored in a row
which consists of the key, index columns, metadata and data. The index columns are a specified subset of the metadata
that can be queried more quickly.

This class is provided in part as a sample implementation of the API.

class encore.storage.sqlite_store.SqliteStore(location=’:memory:’, table=’store’, in-
dex=’dynamic’, index_columns=None)

Sqlite-based Store

48 Chapter 3. Contents

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

The file-like objects returned by data methods are cStringIO objects.

Warning: The table name and metadata names used as index columns are not sanitized. To prevent SQL
injection these should never be directly derived from user-supplied values. This is particularly important for
indexed queries.

connect(credentials=None)
Connect to the key-value store

This connects to the specified location and creates the table, if needed. Sqlite has no notion of authentica-
tion, so credentials are ignored.

delete(key)
Delete a key from the repsository.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Raises KeyError - This will raise a key error if the key is not present in the store.

disconnect()
Disconnect from the key-value store

This clears the reference to the sqlite connection object, allowing it to be garbage-collected.

exists(key)
Test whether or not a key exists in the key-value store

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns exists (bool) - Whether or not the key exists in the key-value store.

from_bytes(key, data, buffer_size=1048576)
Efficiently read data from a bytes object into a key in the key-value store.

This makes no attempt to set metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (bytes) – The data as a bytes object.

• buffer_size (int) – This is ignored.

from_file(key, path, buffer_size=1048576)
Efficiently read data from a file into a key in the key-value store.

This makes no attempt to set metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to read the data from.

• buffer_size (int) – This is ignored.

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

3.2. Storage 49

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns

• data (file-like) - A readable file-like object that provides stream of data from the
key-value store

• metadata (dictionary) - A dictionary of metadata for the key.

Raises KeyError - If the key is not found in the store, a KeyError is raised.

get_data(key)
Retrieve a stream from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store.

Raises KeyError - This will raise a key error if the key is not present in the store.

get_metadata(key, select=None)
Retrieve the metadata for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the result. If unspecified, then return the entire metadata dictionary.

Returns metadata (dict) - A dictionary of metadata associated with the key. The dictionary
has keys as specified by the metadata_keys argument.

Raises KeyError - This will raise a key error if the key is not present in the store, and if any
metadata key is requested which is not present in the metadata.

glob(pattern)
Return keys which match glob-style patterns

Parameters pattern (string) – Glob-style pattern to match keys with.

Returns result (iterable) - A iterable of keys which match the glob pattern.

is_connected()
Whether or not the store is currently connected

Returns connected (bool) - Whether or not the store is currently connected.

multiget(keys)
Retrieve the data and metadata for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_data(keys)
Retrieve the data for a collection of keys.

50 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of file-like) - An iterator of file-like data objects corresponding to
the keys.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_metadata(keys, select=None)
Retrieve the metadata for a collection of keys in the key-value store.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the results. If unspecified, then return the entire metadata dictionary.

Returns metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated
with the key. The dictionaries have keys as specified by the select argument. If a
key specified in select is not present in the metadata, then it will not be present in the
returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiset(keys, values, buffer_size=1048576)
Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and values have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• values (iterable of (file-like, dict) tuples) – An iterator
that provides the (data, metadata) pairs for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_data(keys, datas, buffer_size=1048576)
Set the data for a collection of keys.

3.2. Storage 51

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and datas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• datas (iterable of file-like objects) – An iterator that provides
the data file-like objects for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_metadata(keys, metadatas)
Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiupdate_metadata(keys, metadatas)
Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

52 Chapter 3. Contents

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

query(select=None, **kwargs)
Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of metadata for the key-value store.

Parameters

• select (iterable of strings or None) – An optional list of metadata
keys to return. If this is not None, then the metadata dictionaries will only have
values for the specified keys populated.

• kwargs – Arguments where the keywords are metadata keys, and values are pos-
sible values for that metadata item.

Returns result (iterable) - An iterable of keys, metadata tuples where metadata matches all
the specified values for the specified metadata keywords.

query_keys(**kwargs)
Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially more efficiently imple-
mented.

Parameters kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

Returns result (iterable) - An iterable of key-value store keys whose metadata matches all
the specified values for the specified metadata keywords.

set(key, value, buffer_size=1048576)
Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• value (tuple of file-like, dict) – A pair of objects, the first being a
readable file-like object that provides stream of data from the key-value store. The
second is a dictionary of metadata for the key.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

set_data(key, data, buffer_size=1048576)
Replace the data for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

3.2. Storage 53

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

• data (file-like) – A readable file-like object the that provides stream of data
from the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

to_bytes(key, buffer_size=1048576)
Efficiently store the data associated with a key into a bytes object.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• buffer_size (int) – This is ignored.

Raises KeyError - This will raise a key error if the key is not present in the store.

to_file(key, path, buffer_size=1048576)
Efficiently store the data associated with a key into a file.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to store the data to.

• buffer_size (int) – This is ignored.

Raises KeyError - This will raise a key error if the key is not present in the store.

transaction(notes)
Provide a transaction context manager

update_metadata(key, metadata)
Update the metadata for a given key in the key-value store.

54 Chapter 3. Contents

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

This performs a dictionary update on the existing metadata with the provided metadata keys and values

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Raises KeyError - This will raise a key error if the key is not present in the store.

File System Store

This file defines a filesystem store. This stores data in a specified directory in a filesystem. Data files are stored in files
with name key+’.data’ and metadata files with name key+’.metadata’.

encore.storage.filesystem_store.init_shared_store(path, magic_fname=’.FSStore’)
Create the magic file for the shared store. Useful to initialize the store for the first time.

Parameters

• path – The directory that will be used for the file store.

• magic_fname – The name of the magic file in that directory,

class encore.storage.filesystem_store.FileSystemStore(path, magic_fname=’.FSStore’)
A store that uses a Shared file system to store the data/metadata.

__init__(path, magic_fname=’.FSStore’)
Initializes the store given a path to a store.

Parameters

• path (str:) – A path to the root of the file system store.

• magic_fname – The name of the magic file in that directory,

connect(credentials=None)
Connect to the key-value store.

Parameters credentials – These are not used by default.

delete(key)
Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Events StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key.

disconnect()
Disconnect from the key-value store

This store does not authenticate, and has no external resources, so this does nothing

exists(key)
Test whether or not a key exists in the key-value store

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

3.2. Storage 55

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

Returns exists (bool) - Whether or not the key exists in the key-value store.

from_bytes(key, data, buffer_size=1048576)
Efficiently store a bytes object as the data associated with a key.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from a bytes object to the underlying data store. The default implementation uses the set() method together
with a cStringIO.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (bytes) – The data as a bytes object.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

from_file(key, path, buffer_size=1048576)
Efficiently read data from a file into a key in the key-value store.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from a path in the filesystem to the underlying data store. The default implementation uses the set()
method together with chunked reads from the disk which are fed into the data stream.

This makes no attempt to set metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to read the data from.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns

• data (file-like) - A readable file-like object that provides stream of data from the
key-value store

• metadata (dictionary) - A dictionary of metadata for the key.

Raises KeyError - If the key is not found in the store, a KeyError is raised.

get_data(key)
Retrieve a stream from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store.

Raises KeyError - This will raise a key error if the key is not present in the store.

56 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

get_metadata(key, select=None)
Retrieve the metadata for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the result. If unspecified, then return the entire metadata dictionary.

Returns metadata (dict) - A dictionary of metadata associated with the key. The dictionary
has keys as specified by the select argument. If a key specified in select is not present
in the metadata, then it will not be present in the returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

glob(pattern)
Return keys which match glob-style patterns

Parameters pattern (string) – Glob-style pattern to match keys with.

Returns result (iterable) - A iterable of keys which match the glob pattern.

is_connected()
Whether or not the store is currently connected

Returns connected (bool) - Whether or not the store is currently connected.

multiget(keys)
Retrieve the data and metadata for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_data(keys)
Retrieve the data for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of file-like) - An iterator of file-like data objects corresponding to
the keys.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_metadata(keys, select=None)
Retrieve the metadata for a collection of keys in the key-value store.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the results. If unspecified, then return the entire metadata dictionary.

Returns metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated
with the key. The dictionaries have keys as specified by the select argument. If a
key specified in select is not present in the metadata, then it will not be present in the
returned value.

3.2. Storage 57

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

Raises KeyError - This will raise a key error if the key is not present in the store.

multiset(keys, values, buffer_size=1048576)
Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and values have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• values (iterable of (file-like, dict) tuples) – An iterator
that provides the (data, metadata) pairs for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_data(keys, datas, buffer_size=1048576)
Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and datas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• datas (iterable of file-like objects) – An iterator that provides
the data file-like objects for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

58 Chapter 3. Contents

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_metadata(keys, metadatas)
Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiupdate_metadata(keys, metadatas)
Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

query(select=None, **kwargs)
Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of metadata for the key-value store.

Parameters

• select (iterable of strings or None) – An optional list of metadata
keys to return. If this is not None, then the metadata dictionaries will only have
values for the specified keys populated.

• kwargs – Arguments where the keywords are metadata keys, and values are pos-
sible values for that metadata item.

Returns result (iterable) - An iterable of (key, metadata) tuples where metadata matches all
the specified values for the specified metadata keywords. If a key specified in select is

3.2. Storage 59

Encore Documentation, Release 0.7.0

not present in the metadata of a particular key, then it will not be present in the returned
value.

query_keys(**kwargs)
Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially more efficiently imple-
mented.

Parameters kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

Returns result (iterable) - An iterable of key-value store keys whose metadata matches all
the specified values for the specified metadata keywords.

set(key, value, buffer_size=1048576)
Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• value (tuple of file-like, dict) – A pair of objects, the first being a
readable file-like object that provides stream of data from the key-value store. The
second is a dictionary of metadata for the key.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_data(key, data, buffer_size=1048576)
Replace the data for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (file-like) – A readable file-like object the that provides stream of data
from the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

60 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

to_bytes(key, buffer_size=1048576)
Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a bytes object. The default implementation uses the get() method to-
gether with chunked reads from the returned data stream and join.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Returns bytes - The contents of the file-like object as bytes.

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to extracting the data.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is extracted.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after extracting the data.

to_file(key, path, buffer_size=1048576)
Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a path in the filesystem. The default implementation uses the get()
method together with chunked reads from the returned data stream to the disk.

3.2. Storage 61

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to store the data to.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to disk.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to disk.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to disk.

transaction(notes)
Provide a transaction context manager

This class does not support transactions, so it returns a dummy object.

update_metadata(key, metadata)
Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the provided metadata keys and values

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

Static URL Store

This module contains the StaticURLStore store that communicates with a remote HTTP server which provides
the actual data storage. This is a simple read-only store that can be run against a static HTTP server which provides a
json file with all metadata and then serves data from URLs from another path. The metadata URL is polled periodically
for updates.

A typical static server might be layed out as:

base_directory/
index.json
data/

key1
key2
...

class encore.storage.static_url_store.StaticURLStore(root_url, data_path, query_path,
poll=300)

A read-only key-value store that is a front end for data served via URLs

62 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

All data is assumed to be served from some root url. In addition the store requires knowledge of two paths: a
data prefix URL which is a partial URL to which the keys will be appended when requesting data, and a query
URL which is a single URL which provides all metadata as a json encoded file.

For example, an HTTP server may store data at URLs of the form:

http://www.example.com/data/<key>

and may store the metadata at:

http://www.example.com/index.json

These would have a root url of “http://www.example.com/”, a data path of “data/” and a query path of “in-
dex.json”.

All queries are performed using urllib.urlopen, so this store can be implemented by an HTTP, FTP or file server
which serves static files. When connecting, if appropriate credentials are supplied then HTTP authentication
will be used when connecting the remote server

Warning: Since we use urllib without any further modifications, HTTPS requests do not validate the
server’s certificate.

Because of the limited nature of the interface, this store implementation is read only, and handles updates via
periodic polling of the query prefix URL. This guarantees that the viewed data is always consistent, it just may
not be current. Most of the work of querying is done on the client side using the cached metadata.

Parameters

• event_manager – An event_manager which implements the
BaseEventManager API.

• root_url (str) – The base url that data is served from.

• data_path (str) – The URL prefix that the data is served from.

• query_path (str) – The URL that the metadata is served from.

• poll (float) – The polling frequency for the polling thread. Polls every 5 min by
default.

connect(credentials=None, proxy_handler=None, auth_handler_factory=None)
Connect to the key-value store, optionally with authentication

This method creates appropriate urllib openers for the store.

Parameters

• credentials (dict) – A dictionary which has at least keys ‘username’ and
‘password’ and optional keys ‘uri’ and ‘realm’. The ‘uri’ will default to the root
url of the store, and ‘realm’ will default to ‘encore.storage’.

• proxy_handler (urllib.ProxyHandler) – An optional url-
lib.ProxyHandler instance. If none is provided then urllib will create a proxy
handler from the user’s environment if needed.

• auth_handler_factory – An optional factory to build urllib authentica-
tors. The credentials will be passed as keyword arguments to this handler’s
add_password method.

disconnect()
Disconnect from the key-value store

3.2. Storage 63

http://www.example.com/
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

This method disposes or disconnects to any long-lived resources that the store requires.

exists(key)
Test whether or not a key exists in the key-value store

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns exists (bool) - Whether or not the key exists in the key-value store.

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns

• data (file-like) - A readable file-like object that provides stream of data from the
key-value store. This is the same type of filelike object returned by urllib’s urlopen
function.

• metadata (dictionary) - A dictionary of metadata for the key.

Raises KeyError - If the key is not found in the store, a KeyError is raised.

get_data(key)
Retrieve a stream from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store. This is the same type of filelike object returned by urllib’s urlopen
function.

Raises KeyError - This will raise a key error if the key is not present in the store.

get_metadata(key, select=None)
Retrieve the metadata for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the result. If unspecified, then return the entire metadata dictionary.

Returns metadata (dict) - A dictionary of metadata associated with the key. The dictionary
has keys as specified by the select argument. If a key specified in select is not present
in the metadata, then it will not be present in the returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

glob(pattern)
Return keys which match glob-style patterns

Parameters pattern (string) – Glob-style pattern to match keys with.

Returns result (iterable) - A iterable of keys which match the glob pattern.

is_connected()
Whether or not the store is currently connected

Returns connected (bool) - Whether or not the store is currently connected.

64 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

multiget(keys)
Retrieve the data and metadata for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_data(keys)
Retrieve the data for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of file-like) - An iterator of file-like data objects corresponding to
the keys.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_metadata(keys, select=None)
Retrieve the metadata for a collection of keys in the key-value store.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the results. If unspecified, then return the entire metadata dictionary.

Returns metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated
with the key. The dictionaries have keys as specified by the select argument. If a
key specified in select is not present in the metadata, then it will not be present in the
returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

query(select=None, **kwargs)
Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of metadata for the key-value store.

Parameters

• select (iterable of strings or None) – An optional list of metadata
keys to return. If this is not None, then the metadata dictionaries will only have
values for the specified keys populated.

• kwargs – Arguments where the keywords are metadata keys, and values are pos-
sible values for that metadata item.

Returns result (iterable) - An iterable of (key, metadata) tuples where metadata matches all
the specified values for the specified metadata keywords. If a key specified in select is
not present in the metadata of a particular key, then it will not be present in the returned
value.

query_keys(**kwargs)
Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of keys for the key-value store.

3.2. Storage 65

Encore Documentation, Release 0.7.0

This is equivalent to self.query(**kwargs).keys(), but potentially more efficiently imple-
mented.

Parameters kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

Returns result (iterable) - An iterable of key-value store keys whose metadata matches all
the specified values for the specified metadata keywords.

to_bytes(key, buffer_size=1048576)
Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a bytes object. The default implementation uses the get() method to-
gether with chunked reads from the returned data stream and join.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Returns bytes - The contents of the file-like object as bytes.

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to extracting the data.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is extracted.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after extracting the data.

to_file(key, path, buffer_size=1048576)
Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a path in the filesystem. The default implementation uses the get()
method together with chunked reads from the returned data stream to the disk.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to store the data to.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to disk.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to disk.

66 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to disk.

update_index()
Request the most recent version of the metadata

This downloads the json file at the query_path location, and updates the local metadata cache with this
information. It then emits events that represent the difference between the old metadata and the new
metadata.

This method is normally called from the polling thread, but can be called by other code when needed. It
locks the metadata index whilst performing the update.

Dynamic URL Store

This module contains the DynamicURLStore store that communicates with a remote HTTP server which provides
the actual data storage. This is a store which implements the basic operations via HTTP GET, POST, PUT and
DELETE commands as described in the class documentation.

The implementation relies on the third-party requests library to handle the HTTP operations.

class encore.storage.dynamic_url_store.DynamicURLStore(base_url, query_url,
url_format=’{base}/{key}/{part}’,
url_format_no_part=’{base}/{key}’,
parts={‘permissions’: ‘auth’,
‘data’: ‘data’, ‘metadata’:
‘metadata’})

Store implementation which gets and sets from a web server

This store expects a server which exposes URLs for each key. By default these URLs are of the form:

<base>/<key>/<part>

Where <base> is a common prefix, <key> is the key of interest, and <part> is one of “data”, “metadata”
or “auth”. If the store does not follow this format, you can provide a differnt url_format argument and a
different mapping of <part> to aspects of the key.

The server is expected to respond to queries against these URLS in the following ways:
GET <base>/<key>/data return the bytes in the body of the response

PUT <base>/<key>/data accept the data bytes from the body of the request

GET <base>/<key>/metadata return metadata as JSON

PUT <base>/<key>/metadata set the metadata based on JSON contained in the body of the request

POST <base>/<key>/metadata update the metadata based on JSON contained in the body of the
request (as dict.update())

GET <base>/<key>/auth return permissions information as JSON

PUT <base>/<key>/auth set the permissions based on JSON contained in the body of the request

POST <base>/<key>/metadata update the permissions based on JSON contained in the body of
the request

In addition, a DELETE request to a URL of the form <base>/<key> should remove the key from the remote
store. This pattern is configurable via the url_format_no_part argument to the constructor.

In addition, the server should have a query URL which accepts GET reuqests containing a JSON data structure
of metadata key, value pairs to filter with, and should return a list of macthing keys, one per line.

3.2. Storage 67

Encore Documentation, Release 0.7.0

connect(credentials=None)
Connect to a DynamicURLStore

Parameters credentials ((user_tag, requests.Session)) – The credentials
are a tuple containing ther user’s permission tag and a requests Session initialized with
appropriate authentication.

delete(key)
Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Events StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key.

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns value (instance of Value) - An instance of a Value subclass which holds references
to the data, metadata and other information about the key.

Raises KeyError - If the key is not found in the store, a KeyError is raised.

get_data(key)
Retrieve a stream from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store.

Raises KeyError - This will raise a key error if the key is not present in the store.

get_metadata(key, select=None)
Retrieve the metadata for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the result. If unspecified, then return the entire metadata dictionary.

Returns metadata (dict) - A dictionary of metadata associated with the key. The dictionary
has keys as specified by the select argument. If a key specified in select is not present
in the metadata, then it will not be present in the returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

get_permissions(key)
Return the set of permissions the user has

Parameters key (str) – The key for the resource which you want to know the permissions.

Returns permissions (dict of str: set of str) - A dictionary whose keys are the permissions
and values are sets of tags which have that permission.

68 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#str

Encore Documentation, Release 0.7.0

Raises

• KeyError - This error will be raised if the key does not exist or the user is not
authorized to see it.

• AuthorizationError - This error will be raised if user is authorized to see the key,
but is not an owner.

query(select=None, **kwargs)
Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of metadata for the key-value store.

Parameters

• select (iterable of strings or None) – An optional list of metadata
keys to return. If this is not None, then the metadata dictionaries will only have
values for the specified keys populated.

• kwargs – Arguments where the keywords are metadata keys, and values are pos-
sible values for that metadata item.

Returns result (iterable) - An iterable of (key, metadata) tuples where metadata matches all
the specified values for the specified metadata keywords. If a key specified in select is
not present in the metadata of a particular key, then it will not be present in the returned
value.

query_keys(**kwargs)
Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially more efficiently imple-
mented.

Parameters kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

Returns result (iterable) - An iterable of key-value store keys whose metadata matches all
the specified values for the specified metadata keywords.

set(key, value, buffer_size=1048576)
Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• value (instance of Value) – An instance of a Value subclass.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

3.2. Storage 69

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_data(key, data, buffer_size=1048576)
Replace the data for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (file-like) – A readable file-like object the that provides stream of data
from the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_permissions(key, permissions)
Set the permissions on a key the user owns

Parameters

• key (str) – The key for the resource which you want to know the permissions.

• permissions (dict of str: set of str) – A dictionary whose keys
are the permissions and values are sets of tags which have that permission. There
must be an ‘owned’ permission with at least one tag.

70 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str

Encore Documentation, Release 0.7.0

Raises

• KeyError - This error will be raised if the key does not exist or the user is not
authorized to see it.

• AuthorizationError - This error will be raised if user is authorized to see the key,
but is not an owner.

transaction(notes)
Provide a transaction context manager

This class does not support transactions, so it returns a dummy object.

update_metadata(key, metadata)
Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the provided metadata keys and values

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

update_permissions(key, permissions)
Add permissions on a key the user owns

The tags provided in the permissions dictionary will be added to the existing set of tags for each permis-
sion.

Parameters

• key (str) – The key for the resource which you want to know the permissions.

• permissions (dict of str: set of str) – A dictionary whose keys
are the permissions and values are sets of tags which have that permission.

Raises

• KeyError - This error will be raised if the key does not exist or the user is not
authorized to see it.

• AuthorizationError - This error will be raised if user is authorized to see the key,
but is not an owner.

Joined Store

class encore.storage.joined_store.JoinedStore(stores)
A key-value store that joins together several other Key-Value Stores

A joined store is a composite store which takes a list of stores and presents a set of keys that is the union of
all the keys that are available in all the stores. When a key is available in multiple stores, then the store which
comes first in the list has priority.

All writes are performed into the first store in the list.
Parameters

3.2. Storage 71

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str

Encore Documentation, Release 0.7.0

• event_manager – An event_manager which implements the
BaseEventManager API.

• stores (list of stores) – The stores that are joined together by this store.
connect(credentials=None)

Connect to the key-value store, optionally with authentication

This method creates or connects to any long-lived resources that the store requires.

Parameters credentials – An object that can supply appropriate credentials to to au-
thenticate the use of any required resources. The exact form of the credentials is
implementation-specific, but may be as simple as a (username, password) tu-
ple.

delete(key)
Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Events StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key.

disconnect()
Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the store requires.

exists(key)
Test whether or not a key exists in the key-value store

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns exists (bool) - Whether or not the key exists in the key-value store.

from_bytes(key, data, buffer_size=1048576)
Efficiently store a bytes object as the data associated with a key.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from a bytes object to the underlying data store. The default implementation uses the set() method together
with a cStringIO.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (bytes) – The data as a bytes object.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

from_file(key, path, buffer_size=1048576)
Efficiently read data from a file into a key in the key-value store.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from a path in the filesystem to the underlying data store. The default implementation uses the set()
method together with chunked reads from the disk which are fed into the data stream.

This makes no attempt to set metadata.

72 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to read the data from.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns

• data (file-like) - A readable file-like object that provides stream of data from the
key-value store

• metadata (dictionary) - A dictionary of metadata for the key.

Raises KeyError - If the key is not found in the store, a KeyError is raised.

get_data(key)
Retrieve a stream from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store.

Raises KeyError - This will raise a key error if the key is not present in the store.

get_metadata(key, select=None)
Retrieve the metadata for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the result. If unspecified, then return the entire metadata dictionary.

Returns metadata (dict) - A dictionary of metadata associated with the key. The dictionary
has keys as specified by the select argument. If a key specified in select is not present
in the metadata, then it will not be present in the returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

glob(pattern)
Return keys which match glob-style patterns

Parameters pattern (string) – Glob-style pattern to match keys with.

Returns result (iterable) - A iterable of keys which match the glob pattern.

is_connected()
Whether or not the store is currently connected

Returns connected (bool) - Whether or not the store is currently connected.

3.2. Storage 73

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

multiget(keys)
Retrieve the data and metadata for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_data(keys)
Retrieve the data for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of file-like) - An iterator of file-like data objects corresponding to
the keys.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_metadata(keys, select=None)
Retrieve the metadata for a collection of keys in the key-value store.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the results. If unspecified, then return the entire metadata dictionary.

Returns metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated
with the key. The dictionaries have keys as specified by the select argument. If a
key specified in select is not present in the metadata, then it will not be present in the
returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiset(keys, values, buffer_size=1048576)
Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and values have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• values (iterable of (file-like, dict) tuples) – An iterator
that provides the (data, metadata) pairs for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

74 Chapter 3. Contents

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_data(keys, datas, buffer_size=1048576)
Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and datas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• datas (iterable of file-like objects) – An iterator that provides
the data file-like objects for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_metadata(keys, metadatas)
Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

3.2. Storage 75

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

multiupdate_metadata(keys, metadatas)
Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

query(select=None, **kwargs)
Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of metadata for the key-value store.

Parameters

• select (iterable of strings or None) – An optional list of metadata
keys to return. If this is not None, then the metadata dictionaries will only have
values for the specified keys populated.

• kwargs – Arguments where the keywords are metadata keys, and values are pos-
sible values for that metadata item.

Returns result (iterable) - An iterable of (key, metadata) tuples where metadata matches all
the specified values for the specified metadata keywords. If a key specified in select is
not present in the metadata of a particular key, then it will not be present in the returned
value.

query_keys(**kwargs)
Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially more efficiently imple-
mented.

Parameters kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

Returns result (iterable) - An iterable of key-value store keys whose metadata matches all
the specified values for the specified metadata keywords.

set(key, value, buffer_size=1048576)
Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

76 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

• value (tuple of file-like, dict) – A pair of objects, the first being a
readable file-like object that provides stream of data from the key-value store. The
second is a dictionary of metadata for the key.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_data(key, data, buffer_size=1048576)
Replace the data for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (file-like) – A readable file-like object the that provides stream of data
from the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

3.2. Storage 77

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

to_bytes(key, buffer_size=1048576)
Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a bytes object. The default implementation uses the get() method to-
gether with chunked reads from the returned data stream and join.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Returns bytes - The contents of the file-like object as bytes.

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to extracting the data.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is extracted.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after extracting the data.

to_file(key, path, buffer_size=1048576)
Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a path in the filesystem. The default implementation uses the get()
method together with chunked reads from the returned data stream to the disk.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to store the data to.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to disk.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to disk.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to disk.

transaction(notes)
Provide a transaction context manager

Implementations which have no native notion of transactions may choose not to implement this.

78 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

This method provides a context manager which creates a data store transaction in its __enter__() method,
and commits it in its __exit__() method if no errors occur. Intended usage is:

with repo.transaction("Writing data..."):
everything written in this block is part of the transaction
...

If the block exits without error, the transaction commits, otherwise the transaction should roll back the
state of the underlying data store to the start of the transaction.

Parameters notes (string) – Some information about the transaction, which may or
may not be used by the implementation.

Returns transaction (context manager) - A context manager for the transaction.

Events

• StoreTransactionStartEvent - This event should be emitted on entry into the
transaction.

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreTransactionEndEvent - This event should be emitted on successful conclu-
sion of the transaction, before any Set or Delete events are emitted.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set during the transaction.

• StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key for all deleted keys.

update_metadata(key, metadata)
Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the provided metadata keys and values

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

MountedStore

A store which combines two stores by mounting one of the stores at a particular point in the other store’s key space,
prefixing all references to keys with the mount point. This is similar in concept to mounting filesystems.

class encore.storage.mounted_store.MountedStore(mount_point, mount_store, back-
ing_store)

A key-value store that mounts another store at a particular key prefix

3.2. Storage 79

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

The backing store is treated as read-only, and only modifications are allowed to the first store, and only for keys
which match the mounting prefix.

The primary purpose for this is to have a local cache of a subsection of a remote store, such as a StaticURLStore
or DynamicURLStore.

Parameters

• mount_point (str) – Key prefix for the mounted store.

• mount_store (AbstractStore) – The store to be mounted

• backing_store (AbstractStore) – The store that we are mounting against
connect(credentials=None)

Connect to the key-value store, optionally with authentication

This method creates or connects to any long-lived resources that the store requires.

Parameters credentials – An object that can supply appropriate credentials to to au-
thenticate the use of any required resources. The exact form of the credentials is
implementation-specific, but may be as simple as a (username, password) tu-
ple.

delete(key)
Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Events StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key.

disconnect()
Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the store requires.

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns

• data (file-like) - A readable file-like object that provides stream of data from the
key-value store

• metadata (dictionary) - A dictionary of metadata for the key.

Raises KeyError - If the key is not found in the store, a KeyError is raised.

info()
Get information about the key-value store

Returns metadata (dict) - A dictionary of metadata giving information about the key-value
store.

is_connected()
Whether or not the store is currently connected

Returns connected (bool) - Whether or not the store is currently connected.

80 Chapter 3. Contents

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

push(key)
Move a key from the mount store to the backing store

query(select=None, **kwargs)
Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of metadata for the key-value store.

Parameters

• select (iterable of strings or None) – An optional list of metadata
keys to return. If this is not None, then the metadata dictionaries will only have
values for the specified keys populated.

• kwargs – Arguments where the keywords are metadata keys, and values are pos-
sible values for that metadata item.

Returns result (iterable) - An iterable of (key, metadata) tuples where metadata matches all
the specified values for the specified metadata keywords. If a key specified in select is
not present in the metadata of a particular key, then it will not be present in the returned
value.

query_keys(**kwargs)
Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise matches with the metadata. If no
arguments are supplied, the query will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially more efficiently imple-
mented.

Parameters kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

Returns result (iterable) - An iterable of key-value store keys whose metadata matches all
the specified values for the specified metadata keywords.

set(key, value, buffer_size=1048576)
Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• value (tuple of file-like, dict) – A pair of objects, the first being a
readable file-like object that provides stream of data from the key-value store. The
second is a dictionary of metadata for the key.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

3.2. Storage 81

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_data(key, data, buffer_size=1048576)
Replace the data for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (file-like) – A readable file-like object the that provides stream of data
from the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

set_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

transaction(notes)
Provide a transaction context manager

Implementations which have no native notion of transactions may choose not to implement this.

This method provides a context manager which creates a data store transaction in its __enter__() method,
and commits it in its __exit__() method if no errors occur. Intended usage is:

with repo.transaction("Writing data..."):
everything written in this block is part of the transaction
...

If the block exits without error, the transaction commits, otherwise the transaction should roll back the
state of the underlying data store to the start of the transaction.

82 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

Parameters notes (string) – Some information about the transaction, which may or
may not be used by the implementation.

Returns transaction (context manager) - A context manager for the transaction.

Events

• StoreTransactionStartEvent - This event should be emitted on entry into the
transaction.

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreTransactionEndEvent - This event should be emitted on successful conclu-
sion of the transaction, before any Set or Delete events are emitted.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set during the transaction.

• StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key for all deleted keys.

update_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

Simple Authenticating Store

This module provides a simple wrapper for a store that implements a simple authentication scheme. This may be used
as a base for more complex and fine-grained authentication.

By default it authenticates by computing a (salted) hash of the user’s password and validates it against the hash stored
in an appropriate key. Authenticated users then have full access to all keys.

Subclasses can refine this behaviour by overriding the check_permissions() method to provide different or more con-
trolled permissioning.

encore.storage.simple_auth_store.make_encoder(salt, hasher=None)
Create a moderately secure salted encoder

Parameters

• salt (bytes) – A salt that is added to the user-supplied password before hashing.
This salt should be kept secret, but needs to be remembered across invocations (ie. the
same salt needs to be used every time the password is encoded).

3.2. Storage 83

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

• hasher (callable) – A callable that takes a string and returns a cryptographic hash
of the string. The default is sha1_hasher().

encore.storage.simple_auth_store.sha1_hasher(s)
A simple utility function for producing a sha1 digest of a string.

class encore.storage.simple_auth_store.SimpleAuthStore(store, encoder,
user_key_path=’.user_’,
user_key_store=None)

A key-value store that wraps another store and implements simple authentication

This wraps an existing store with no notion of authentication and provides simple username/password authenti-
cation, storing a hash of the password in the wrapped store.

The base implementation has all-or-nothing
Parameters

• event_manager – An event_manager which implements the
BaseEventManager API.

• store (AbstractStore instance) – The wrapped store that actually holds the
data.

• encoder (callable) – A callable that computes the password hash.

• user_key_path (str) – The prefix to put before the username for the keys that
store the user’s information. At present these keys must simply hold the encoded hash
of the user’s password.

• user_key_store (AbstractStore instance) – The store to store the user
keys in. Defaults to the wrapped store.

check_permissions(key=None)
Return permissions that the user has for the provided key

The default behaviour gives all authenticated users full access to all keys. Subclasses may implement
finer-grained controls based on user groups or other permissioning systems.

Parameters key (str or None) – The key which the permissions are being requested
for, or the global permissions if the key is None.

Returns permissions (set) - A set of strings chosen from ‘connect’, ‘exists’, ‘get’, ‘set’,
and/or ‘delete’ which express the permissions that the user has on that particular key.

connect(credentials=None)
Connect to the key-value store, optionally with authentication

This method creates or connects to any long-lived resources that the store requires.

Parameters credentials – A dictionary with keys ‘username’ and ‘password’.

delete(key)
Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Events StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent
should be emitted with the key.

Raises AuthenticationError - If the user has no rights to delete the key, then an Authenti-
cation error is raised.

84 Chapter 3. Contents

http://docs.python.org/library/functions.html#callable
http://docs.python.org/library/functions.html#callable
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

disconnect()
Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the store requires.

exists(key)
Test whether or not a key exists in the key-value store

If a user does not have ‘exists’ permissions for this key, then it will return False, even if the key exists
in the underlying store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns exists (bool) - Whether or not the key exists in the key-value store.

from_bytes(key, data, buffer_size=1048576)
Efficiently store a bytes object as the data associated with a key.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from a bytes object to the underlying data store. The default implementation uses the set() method together
with a cStringIO.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (bytes) – The data as a bytes object.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

from_file(key, path, buffer_size=1048576)
Efficiently read data from a file into a key in the key-value store.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from a path in the filesystem to the underlying data store. The default implementation uses the set()
method together with chunked reads from the disk which are fed into the data stream.

This makes no attempt to set metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to read the data from.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

get(key)
Retrieve a stream of data and metdata from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns

• data (file-like) - A readable file-like object that provides stream of data from the
key-value store

3.2. Storage 85

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

• metadata (dictionary) - A dictionary of metadata for the key.

Raises

• KeyError - If the key is not found in the store, or does not exist for the user, a
KeyError is raised.

• AuthenticationError - If the user has no rights to get the key, then an Authentica-
tion error is raised.

get_data(key)
Retrieve a stream from a given key in the key-value store.

Parameters key (string) – The key for the resource in the key-value store. They key is
a unique identifier for the resource within the key-value store.

Returns data (file-like) - A readable file-like object the that provides stream of data from
the key-value store.

Raises

• KeyError - This will raise a key error if the key is not present in the store.

• AuthenticationError - If the user has no rights to get the key, then an Authentica-
tion error is raised.

get_metadata(key, select=None)
Retrieve the metadata for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the result. If unspecified, then return the entire metadata dictionary.

Returns metadata (dict) - A dictionary of metadata associated with the key. The dictionary
has keys as specified by the select argument. If a key specified in select is not present
in the metadata, then it will not be present in the returned value.

Raises

• KeyError - This will raise a key error if the key is not present in the store.

• AuthenticationError - If the user has no rights to get the key, then an Authentica-
tion error is raised.

glob(pattern)
Return keys which match glob-style patterns

Parameters pattern (string) – Glob-style pattern to match keys with.

Returns result (iterable) - A iterable of keys which match the glob pattern.

is_connected()
Whether or not the store is currently connected

Returns connected (bool) - Whether or not the store is currently connected.

multiget(keys)
Retrieve the data and metadata for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

86 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string

Encore Documentation, Release 0.7.0

Returns result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_data(keys)
Retrieve the data for a collection of keys.

Parameters keys (iterable of strings) – The keys for the resources in the key-
value store. Each key is a unique identifier for a resource within the key-value store.

Returns result (iterator of file-like) - An iterator of file-like data objects corresponding to
the keys.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiget_metadata(keys, select=None)
Retrieve the metadata for a collection of keys in the key-value store.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• select (iterable of strings or None) – Which metadata keys to
populate in the results. If unspecified, then return the entire metadata dictionary.

Returns metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated
with the key. The dictionaries have keys as specified by the select argument. If a
key specified in select is not present in the metadata, then it will not be present in the
returned value.

Raises KeyError - This will raise a key error if the key is not present in the store.

multiset(keys, values, buffer_size=1048576)
Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and values have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• values (iterable of (file-like, dict) tuples) – An iterator
that provides the (data, metadata) pairs for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

3.2. Storage 87

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_data(keys, datas, buffer_size=1048576)
Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and datas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• datas (iterable of file-like objects) – An iterator that provides
the data file-like objects for the corresponding keys.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiset_metadata(keys, metadatas)
Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

multiupdate_metadata(keys, metadatas)
Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole collection of sets as a single
transaction.

88 Chapter 3. Contents

http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

Like zip() if keys and metadatas have different lengths, then any excess values in the longer list should be
silently ignored.

Parameters

• keys (iterable of strings) – The keys for the resources in the key-value
store. Each key is a unique identifier for a resource within the key-value store.

• metadatas (iterable of dicts) – An iterator that provides the metadata
dictionaries for the corresponding keys.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata for each key that was set.

set(key, value, buffer_size=1048576)
Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• value (tuple of file-like, dict) – A pair of objects, the first being a
readable file-like object that provides stream of data from the key-value store. The
second is a dictionary of metadata for the key.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

Raises AuthenticationError - If the user has no rights to set the key, then an Authentication
error is raised.

set_data(key, data, buffer_size=1048576)
Replace the data for a given key in the key-value store.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• data (file-like) – A readable file-like object the that provides stream of data
from the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

3.2. Storage 89

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to the underlying store.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to the underlying store.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to the underlying store.

• StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

Raises AuthenticationError - If the user has no rights to set the key, then an Authentication
error is raised.

set_metadata(key, metadata)
Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of metadata.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

Raises AuthenticationError - If the user has no rights to set the key, then an Authentication
error is raised.

to_bytes(key, buffer_size=1048576)
Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a bytes object. The default implementation uses the get() method to-
gether with chunked reads from the returned data stream and join.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Returns bytes - The contents of the file-like object as bytes.

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to extracting the data.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is extracted.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after extracting the data.

90 Chapter 3. Contents

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int

Encore Documentation, Release 0.7.0

to_file(key, path, buffer_size=1048576)
Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more efficient way of copy the data
from the underlying data store to a path in the filesystem. The default implementation uses the get()
method together with chunked reads from the returned data stream to the disk.

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• path (string) – A file system path to store the data to.

• buffer_size (int) – An optional indicator of the number of bytes to read at a
time. Implementations are free to ignore this hint or use a different default if they
need to. The default is 1048576 bytes (1 MiB).

Events

• StoreProgressStartEvent - For buffering implementations, this event should be
emitted prior to writing any data to disk.

• StoreProgressStepEvent - For buffering implementations, this event should be
emitted periodically as data is written to disk.

• StoreProgressEndEvent - For buffering implementations, this event should be
emitted after finishing writing to disk.

update_metadata(key, metadata)
Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the provided metadata keys and values

Parameters

• key (string) – The key for the resource in the key-value store. They key is a
unique identifier for the resource within the key-value store.

• metadata (dict) – A dictionary of metadata to associate with the key. The
dictionary keys should be strings which are valid Python identifiers.

Events StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should
be emitted with the key & metadata

Raises AuthenticationError - If the user has no rights to set the key, then an Authentication
error is raised.

3.2.2 Indices and tables

• genindex

• modindex

• search

3.2.3 License

This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source
Initiative.

Unless otherwise noted:

3.2. Storage 91

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#dict

Encore Documentation, Release 0.7.0

Copyright (c) 2011, Enthought, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Enthought, Inc. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

3.2.4 util.human_date module

Copyright 2009 Jai Vikram Singh Verma (jaivikram[dot]verma[at]gmail[dot]com) Licensed under the Apache License,
Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

3.2.5 concurrent.futures.enhanced_thread_pool_executor

Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to PSF under a Contributor Agreement.

3.3 Concurrent Package

The encore.concurrent module provides utilities and libraries to assist with threaded and other parallel code.

The encore.concurrent.futures subpackage provides an enhanced version of the concurrent.futures
package for Python 2.7 with some useful experimental additions.

The encore.concurrent.threadtools module provides some utilities that encapsulate useful patterns in
threaded code.

92 Chapter 3. Contents

http://www.apache.org/licenses/LICENSE-2.0

Encore Documentation, Release 0.7.0

3.3.1 Contents

encore.concurrent Package

threadtools Module

Module of useful routines for working with concurrency.

encore.concurrent.threadtools.synchronized(func)
Decorator that prevents simultaneous execution of a function

This decorator that ensures that only one thread at a time can be executing the decorated function at the same
time by using a dedicated anonymous lock.

encore.concurrent.futures Package

ThreadPool Executors

enhanced_thread_pool_executor Module

synchronous Module

future Module

abc_work_scheduler Module

asynchronizer Module

serializer Module

serializing_asynchronizer Module

3.3.2 Indices and tables

• genindex

• modindex

• search

3.3.3 License

This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source
Initiative.

Unless otherwise noted:

Copyright (c) 2011, Enthought, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

3.3. Concurrent Package 93

Encore Documentation, Release 0.7.0

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Enthought, Inc. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

3.3.4 util.human_date module

Copyright 2009 Jai Vikram Singh Verma (jaivikram[dot]verma[at]gmail[dot]com) Licensed under the Apache License,
Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

3.3.5 concurrent.futures.enhanced_thread_pool_executor

Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to PSF under a Contributor Agreement.

94 Chapter 3. Contents

http://www.apache.org/licenses/LICENSE-2.0

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

95

Encore Documentation, Release 0.7.0

96 Chapter 4. Indices and tables

CHAPTER 5

License

This software is OSI Certified Open Source Software. OSI Certified is a certification mark of the Open Source
Initiative.

Unless otherwise noted:

Copyright (c) 2011, Enthought, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Enthought, Inc. nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

97

Encore Documentation, Release 0.7.0

98 Chapter 5. License

CHAPTER 6

util.human_date module

Copyright 2009 Jai Vikram Singh Verma (jaivikram[dot]verma[at]gmail[dot]com) Licensed under the Apache License,
Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

99

http://www.apache.org/licenses/LICENSE-2.0

Encore Documentation, Release 0.7.0

100 Chapter 6. util.human_date module

CHAPTER 7

concurrent.futures.enhanced_thread_pool_executor

Copyright 2009 Brian Quinlan. All Rights Reserved. Licensed to PSF under a Contributor Agreement.

101

Encore Documentation, Release 0.7.0

102 Chapter 7. concurrent.futures.enhanced_thread_pool_executor

Python Module Index

e
encore.concurrent.threadtools, 93
encore.events.abstract_event_manager,

12
encore.events.event_manager, 14
encore.events.progress_events, 15
encore.storage.abstract_store, 27
encore.storage.dict_memory_store, 42
encore.storage.dynamic_url_store, 67
encore.storage.events, 37
encore.storage.filesystem_store, 55
encore.storage.joined_store, 71
encore.storage.mounted_store, 79
encore.storage.simple_auth_store, 83
encore.storage.sqlite_store, 48
encore.storage.static_url_store, 62
encore.storage.utils, 40

103

Encore Documentation, Release 0.7.0

104 Python Module Index

Index

Symbols
__init__() (encore.events.progress_events.ProgressManager

method), 16
__init__() (encore.storage.filesystem_store.FileSystemStore

method), 55

A
AbstractAuthorizingStore (class in en-

core.storage.abstract_store), 36
AbstractReadOnlyStore (class in en-

core.storage.abstract_store), 27
AbstractStore (class in encore.storage.abstract_store), 31
action (encore.storage.events.StoreDeleteEvent attribute),

38
action (encore.storage.events.StoreModificationEvent at-

tribute), 38
action (encore.storage.events.StoreSetEvent attribute), 38
action (encore.storage.events.StoreUpdateEvent at-

tribute), 38

B
BaseEvent (class in en-

core.events.abstract_event_manager), 14
BaseEventManager (class in en-

core.events.abstract_event_manager), 12
begin() (encore.storage.utils.SimpleTransactionContext

method), 41
buffer_iterator() (in module encore.storage.utils), 40
BufferIteratorIO (class in encore.storage.utils), 40

C
check_permissions() (en-

core.storage.simple_auth_store.SimpleAuthStore
method), 84

commit() (encore.storage.utils.SimpleTransactionContext
method), 41

connect() (encore.events.abstract_event_manager.BaseEventManager
method), 12

connect() (encore.events.event_manager.EventManager
method), 14

connect() (encore.storage.abstract_store.AbstractReadOnlyStore
method), 28

connect() (encore.storage.dict_memory_store.DictMemoryStore
method), 42

connect() (encore.storage.dynamic_url_store.DynamicURLStore
method), 67

connect() (encore.storage.filesystem_store.FileSystemStore
method), 55

connect() (encore.storage.joined_store.JoinedStore
method), 72

connect() (encore.storage.mounted_store.MountedStore
method), 80

connect() (encore.storage.simple_auth_store.SimpleAuthStore
method), 84

connect() (encore.storage.sqlite_store.SqliteStore
method), 49

connect() (encore.storage.static_url_store.StaticURLStore
method), 63

D
data (encore.storage.abstract_store.Value attribute), 27
delete() (encore.storage.abstract_store.AbstractStore

method), 31
delete() (encore.storage.dict_memory_store.DictMemoryStore

method), 42
delete() (encore.storage.dynamic_url_store.DynamicURLStore

method), 68
delete() (encore.storage.filesystem_store.FileSystemStore

method), 55
delete() (encore.storage.joined_store.JoinedStore

method), 72
delete() (encore.storage.mounted_store.MountedStore

method), 80
delete() (encore.storage.simple_auth_store.SimpleAuthStore

method), 84
delete() (encore.storage.sqlite_store.SqliteStore method),

49
DictMemoryStore (class in en-

core.storage.dict_memory_store), 42
disable() (encore.events.abstract_event_manager.BaseEventManager

method), 13

105

Encore Documentation, Release 0.7.0

disable() (encore.events.event_manager.EventManager
method), 15

disconnect() (encore.events.abstract_event_manager.BaseEventManager
method), 13

disconnect() (encore.events.event_manager.EventManager
method), 15

disconnect() (encore.storage.abstract_store.AbstractReadOnlyStore
method), 28

disconnect() (encore.storage.dict_memory_store.DictMemoryStore
method), 42

disconnect() (encore.storage.filesystem_store.FileSystemStore
method), 55

disconnect() (encore.storage.joined_store.JoinedStore
method), 72

disconnect() (encore.storage.mounted_store.MountedStore
method), 80

disconnect() (encore.storage.simple_auth_store.SimpleAuthStore
method), 84

disconnect() (encore.storage.sqlite_store.SqliteStore
method), 49

disconnect() (encore.storage.static_url_store.StaticURLStore
method), 63

DummyTransactionContext (class in en-
core.storage.utils), 41

DynamicURLStore (class in en-
core.storage.dynamic_url_store), 67

E
emit() (encore.events.abstract_event_manager.BaseEventManager

method), 13
emit() (encore.events.event_manager.EventManager

method), 15
enable() (encore.events.abstract_event_manager.BaseEventManager

method), 13
enable() (encore.events.event_manager.EventManager

method), 15
encore.concurrent.threadtools (module), 93
encore.events.abstract_event_manager (module), 12
encore.events.event_manager (module), 14
encore.events.progress_events (module), 15
encore.storage.abstract_store (module), 27
encore.storage.dict_memory_store (module), 42
encore.storage.dynamic_url_store (module), 67
encore.storage.events (module), 37
encore.storage.filesystem_store (module), 55
encore.storage.joined_store (module), 71
encore.storage.mounted_store (module), 79
encore.storage.simple_auth_store (module), 83
encore.storage.sqlite_store (module), 48
encore.storage.static_url_store (module), 62
encore.storage.utils (module), 40
end() (encore.events.progress_events.ProgressManager

method), 16

EndEventType (encore.events.progress_events.ProgressManager
attribute), 16

EndEventType (encore.storage.utils.StoreProgressManager
attribute), 41

event_manager (encore.storage.abstract_store.AbstractAuthorizingStore
attribute), 36

event_manager (encore.storage.abstract_store.AbstractReadOnlyStore
attribute), 28

event_manager (encore.storage.abstract_store.AbstractStore
attribute), 31

EventManager (class in encore.events.event_manager),
14

exists() (encore.storage.abstract_store.AbstractReadOnlyStore
method), 28

exists() (encore.storage.dict_memory_store.DictMemoryStore
method), 42

exists() (encore.storage.filesystem_store.FileSystemStore
method), 55

exists() (encore.storage.joined_store.JoinedStore
method), 72

exists() (encore.storage.simple_auth_store.SimpleAuthStore
method), 85

exists() (encore.storage.sqlite_store.SqliteStore method),
49

exists() (encore.storage.static_url_store.StaticURLStore
method), 64

exit_state (encore.events.progress_events.ProgressEndEvent
attribute), 18

exit_state (encore.storage.events.StoreProgressEndEvent
attribute), 39

F
FileSystemStore (class in en-

core.storage.filesystem_store), 55
from_bytes() (encore.storage.abstract_store.AbstractStore

method), 31
from_bytes() (encore.storage.dict_memory_store.DictMemoryStore

method), 42
from_bytes() (encore.storage.filesystem_store.FileSystemStore

method), 56
from_bytes() (encore.storage.joined_store.JoinedStore

method), 72
from_bytes() (encore.storage.simple_auth_store.SimpleAuthStore

method), 85
from_bytes() (encore.storage.sqlite_store.SqliteStore

method), 49
from_file() (encore.storage.abstract_store.AbstractStore

method), 32
from_file() (encore.storage.dict_memory_store.DictMemoryStore

method), 43
from_file() (encore.storage.filesystem_store.FileSystemStore

method), 56
from_file() (encore.storage.joined_store.JoinedStore

method), 72

106 Index

Encore Documentation, Release 0.7.0

from_file() (encore.storage.simple_auth_store.SimpleAuthStore
method), 85

from_file() (encore.storage.sqlite_store.SqliteStore
method), 49

G
get() (encore.storage.abstract_store.AbstractReadOnlyStore

method), 28
get() (encore.storage.dict_memory_store.DictMemoryStore

method), 43
get() (encore.storage.dynamic_url_store.DynamicURLStore

method), 68
get() (encore.storage.filesystem_store.FileSystemStore

method), 56
get() (encore.storage.joined_store.JoinedStore method),

73
get() (encore.storage.mounted_store.MountedStore

method), 80
get() (encore.storage.simple_auth_store.SimpleAuthStore

method), 85
get() (encore.storage.sqlite_store.SqliteStore method), 49
get() (encore.storage.static_url_store.StaticURLStore

method), 64
get_data() (encore.storage.abstract_store.AbstractReadOnlyStore

method), 28
get_data() (encore.storage.dict_memory_store.DictMemoryStore

method), 43
get_data() (encore.storage.dynamic_url_store.DynamicURLStore

method), 68
get_data() (encore.storage.filesystem_store.FileSystemStore

method), 56
get_data() (encore.storage.joined_store.JoinedStore

method), 73
get_data() (encore.storage.simple_auth_store.SimpleAuthStore

method), 86
get_data() (encore.storage.sqlite_store.SqliteStore

method), 50
get_data() (encore.storage.static_url_store.StaticURLStore

method), 64
get_data_range() (encore.storage.abstract_store.AbstractReadOnlyStore

method), 28
get_metadata() (encore.storage.abstract_store.AbstractReadOnlyStore

method), 29
get_metadata() (encore.storage.dict_memory_store.DictMemoryStore

method), 43
get_metadata() (encore.storage.dynamic_url_store.DynamicURLStore

method), 68
get_metadata() (encore.storage.filesystem_store.FileSystemStore

method), 56
get_metadata() (encore.storage.joined_store.JoinedStore

method), 73
get_metadata() (encore.storage.simple_auth_store.SimpleAuthStore

method), 86

get_metadata() (encore.storage.sqlite_store.SqliteStore
method), 50

get_metadata() (encore.storage.static_url_store.StaticURLStore
method), 64

get_permissions() (encore.storage.abstract_store.AbstractAuthorizingStore
method), 36

get_permissions() (encore.storage.dynamic_url_store.DynamicURLStore
method), 68

glob() (encore.storage.abstract_store.AbstractReadOnlyStore
method), 29

glob() (encore.storage.dict_memory_store.DictMemoryStore
method), 43

glob() (encore.storage.filesystem_store.FileSystemStore
method), 57

glob() (encore.storage.joined_store.JoinedStore method),
73

glob() (encore.storage.simple_auth_store.SimpleAuthStore
method), 86

glob() (encore.storage.sqlite_store.SqliteStore method),
50

glob() (encore.storage.static_url_store.StaticURLStore
method), 64

I
info() (encore.storage.mounted_store.MountedStore

method), 80
init_shared_store() (in module en-

core.storage.filesystem_store), 55
is_connected() (encore.storage.abstract_store.AbstractReadOnlyStore

method), 29
is_connected() (encore.storage.dict_memory_store.DictMemoryStore

method), 43
is_connected() (encore.storage.filesystem_store.FileSystemStore

method), 57
is_connected() (encore.storage.joined_store.JoinedStore

method), 73
is_connected() (encore.storage.mounted_store.MountedStore

method), 80
is_connected() (encore.storage.simple_auth_store.SimpleAuthStore

method), 86
is_connected() (encore.storage.sqlite_store.SqliteStore

method), 50
is_connected() (encore.storage.static_url_store.StaticURLStore

method), 64
is_enabled() (encore.events.abstract_event_manager.BaseEventManager

method), 13
is_enabled() (encore.events.event_manager.EventManager

method), 15
iterdata() (encore.storage.abstract_store.Value method),

27

J
JoinedStore (class in encore.storage.joined_store), 71

Index 107

Encore Documentation, Release 0.7.0

K
key (encore.storage.events.StoreDeleteEvent attribute),

38
key (encore.storage.events.StoreKeyEvent attribute), 38
key (encore.storage.events.StoreModificationEvent at-

tribute), 38
key (encore.storage.events.StoreProgressEndEvent

attribute), 39
key (encore.storage.events.StoreProgressEvent attribute),

39
key (encore.storage.events.StoreProgressStartEvent at-

tribute), 39
key (encore.storage.events.StoreProgressStepEvent at-

tribute), 39
key (encore.storage.events.StoreSetEvent attribute), 38
key (encore.storage.events.StoreUpdateEvent attribute),

38

M
make_encoder() (in module en-

core.storage.simple_auth_store), 83
mark_as_handled() (en-

core.events.abstract_event_manager.BaseEvent
method), 14

message (encore.events.progress_events.ProgressEndEvent
attribute), 18

message (encore.events.progress_events.ProgressEvent
attribute), 17

message (encore.events.progress_events.ProgressStartEvent
attribute), 17

message (encore.events.progress_events.ProgressStepEvent
attribute), 17

message (encore.storage.events.StoreProgressEndEvent
attribute), 39

message (encore.storage.events.StoreProgressEvent at-
tribute), 39

message (encore.storage.events.StoreProgressStartEvent
attribute), 39

message (encore.storage.events.StoreProgressStepEvent
attribute), 39

metadata (encore.storage.abstract_store.Value attribute),
27

metadata (encore.storage.events.StoreDeleteEvent at-
tribute), 38

metadata (encore.storage.events.StoreKeyEvent at-
tribute), 38

metadata (encore.storage.events.StoreModificationEvent
attribute), 38

metadata (encore.storage.events.StoreProgressEndEvent
attribute), 39

metadata (encore.storage.events.StoreProgressEvent at-
tribute), 39

metadata (encore.storage.events.StoreProgressStartEvent
attribute), 39

metadata (encore.storage.events.StoreProgressStepEvent
attribute), 39

metadata (encore.storage.events.StoreSetEvent attribute),
38

metadata (encore.storage.events.StoreUpdateEvent
attribute), 38

MountedStore (class in encore.storage.mounted_store),
79

multiget() (encore.storage.abstract_store.AbstractReadOnlyStore
method), 29

multiget() (encore.storage.dict_memory_store.DictMemoryStore
method), 44

multiget() (encore.storage.filesystem_store.FileSystemStore
method), 57

multiget() (encore.storage.joined_store.JoinedStore
method), 73

multiget() (encore.storage.simple_auth_store.SimpleAuthStore
method), 86

multiget() (encore.storage.sqlite_store.SqliteStore
method), 50

multiget() (encore.storage.static_url_store.StaticURLStore
method), 64

multiget_data() (encore.storage.abstract_store.AbstractReadOnlyStore
method), 29

multiget_data() (encore.storage.dict_memory_store.DictMemoryStore
method), 44

multiget_data() (encore.storage.filesystem_store.FileSystemStore
method), 57

multiget_data() (encore.storage.joined_store.JoinedStore
method), 74

multiget_data() (encore.storage.simple_auth_store.SimpleAuthStore
method), 87

multiget_data() (encore.storage.sqlite_store.SqliteStore
method), 50

multiget_data() (encore.storage.static_url_store.StaticURLStore
method), 65

multiget_metadata() (en-
core.storage.abstract_store.AbstractReadOnlyStore
method), 29

multiget_metadata() (en-
core.storage.dict_memory_store.DictMemoryStore
method), 44

multiget_metadata() (en-
core.storage.filesystem_store.FileSystemStore
method), 57

multiget_metadata() (en-
core.storage.joined_store.JoinedStore method),
74

multiget_metadata() (en-
core.storage.simple_auth_store.SimpleAuthStore
method), 87

multiget_metadata() (en-
core.storage.sqlite_store.SqliteStore method),
51

108 Index

Encore Documentation, Release 0.7.0

multiget_metadata() (en-
core.storage.static_url_store.StaticURLStore
method), 65

multiset() (encore.storage.abstract_store.AbstractStore
method), 32

multiset() (encore.storage.dict_memory_store.DictMemoryStore
method), 44

multiset() (encore.storage.filesystem_store.FileSystemStore
method), 58

multiset() (encore.storage.joined_store.JoinedStore
method), 74

multiset() (encore.storage.simple_auth_store.SimpleAuthStore
method), 87

multiset() (encore.storage.sqlite_store.SqliteStore
method), 51

multiset_data() (encore.storage.abstract_store.AbstractStore
method), 32

multiset_data() (encore.storage.dict_memory_store.DictMemoryStore
method), 45

multiset_data() (encore.storage.filesystem_store.FileSystemStore
method), 58

multiset_data() (encore.storage.joined_store.JoinedStore
method), 75

multiset_data() (encore.storage.simple_auth_store.SimpleAuthStore
method), 88

multiset_data() (encore.storage.sqlite_store.SqliteStore
method), 51

multiset_metadata() (en-
core.storage.abstract_store.AbstractStore
method), 33

multiset_metadata() (en-
core.storage.dict_memory_store.DictMemoryStore
method), 45

multiset_metadata() (en-
core.storage.filesystem_store.FileSystemStore
method), 59

multiset_metadata() (en-
core.storage.joined_store.JoinedStore method),
75

multiset_metadata() (en-
core.storage.simple_auth_store.SimpleAuthStore
method), 88

multiset_metadata() (en-
core.storage.sqlite_store.SqliteStore method),
52

multiupdate_metadata() (en-
core.storage.abstract_store.AbstractStore
method), 33

multiupdate_metadata() (en-
core.storage.dict_memory_store.DictMemoryStore
method), 46

multiupdate_metadata() (en-
core.storage.filesystem_store.FileSystemStore
method), 59

multiupdate_metadata() (en-
core.storage.joined_store.JoinedStore method),
75

multiupdate_metadata() (en-
core.storage.simple_auth_store.SimpleAuthStore
method), 88

multiupdate_metadata() (en-
core.storage.sqlite_store.SqliteStore method),
52

O
operation_id (encore.events.progress_events.ProgressEndEvent

attribute), 18
operation_id (encore.events.progress_events.ProgressEvent

attribute), 17
operation_id (encore.events.progress_events.ProgressStartEvent

attribute), 17
operation_id (encore.events.progress_events.ProgressStepEvent

attribute), 17
operation_id (encore.storage.events.StoreProgressEndEvent

attribute), 39
operation_id (encore.storage.events.StoreProgressEvent

attribute), 38
operation_id (encore.storage.events.StoreProgressStartEvent

attribute), 39
operation_id (encore.storage.events.StoreProgressStepEvent

attribute), 39

P
permissions (encore.storage.abstract_store.Value at-

tribute), 27
post_emit() (encore.events.abstract_event_manager.BaseEvent

method), 14
pre_emit() (encore.events.abstract_event_manager.BaseEvent

method), 14
ProgressEndEvent (class in en-

core.events.progress_events), 18
ProgressEvent (class in encore.events.progress_events),

17
ProgressManager (class in en-

core.events.progress_events), 15
ProgressStartEvent (class in en-

core.events.progress_events), 17
ProgressStepEvent (class in en-

core.events.progress_events), 17
push() (encore.storage.mounted_store.MountedStore

method), 80

Q
query() (encore.storage.abstract_store.AbstractReadOnlyStore

method), 30
query() (encore.storage.dict_memory_store.DictMemoryStore

method), 46

Index 109

Encore Documentation, Release 0.7.0

query() (encore.storage.dynamic_url_store.DynamicURLStore
method), 69

query() (encore.storage.filesystem_store.FileSystemStore
method), 59

query() (encore.storage.joined_store.JoinedStore
method), 76

query() (encore.storage.mounted_store.MountedStore
method), 81

query() (encore.storage.sqlite_store.SqliteStore method),
53

query() (encore.storage.static_url_store.StaticURLStore
method), 65

query_keys() (encore.storage.abstract_store.AbstractReadOnlyStore
method), 30

query_keys() (encore.storage.dict_memory_store.DictMemoryStore
method), 46

query_keys() (encore.storage.dynamic_url_store.DynamicURLStore
method), 69

query_keys() (encore.storage.filesystem_store.FileSystemStore
method), 60

query_keys() (encore.storage.joined_store.JoinedStore
method), 76

query_keys() (encore.storage.mounted_store.MountedStore
method), 81

query_keys() (encore.storage.sqlite_store.SqliteStore
method), 53

query_keys() (encore.storage.static_url_store.StaticURLStore
method), 65

R
range() (encore.storage.abstract_store.Value method), 27
read() (encore.storage.utils.BufferIteratorIO method), 40
rollback() (encore.storage.utils.SimpleTransactionContext

method), 41

S
set() (encore.storage.abstract_store.AbstractStore

method), 34
set() (encore.storage.dict_memory_store.DictMemoryStore

method), 46
set() (encore.storage.dynamic_url_store.DynamicURLStore

method), 69
set() (encore.storage.filesystem_store.FileSystemStore

method), 60
set() (encore.storage.joined_store.JoinedStore method),

76
set() (encore.storage.mounted_store.MountedStore

method), 81
set() (encore.storage.simple_auth_store.SimpleAuthStore

method), 89
set() (encore.storage.sqlite_store.SqliteStore method), 53
set_data() (encore.storage.abstract_store.AbstractStore

method), 34

set_data() (encore.storage.dict_memory_store.DictMemoryStore
method), 47

set_data() (encore.storage.dynamic_url_store.DynamicURLStore
method), 70

set_data() (encore.storage.filesystem_store.FileSystemStore
method), 60

set_data() (encore.storage.joined_store.JoinedStore
method), 77

set_data() (encore.storage.mounted_store.MountedStore
method), 82

set_data() (encore.storage.simple_auth_store.SimpleAuthStore
method), 89

set_data() (encore.storage.sqlite_store.SqliteStore
method), 53

set_metadata() (encore.storage.abstract_store.AbstractStore
method), 35

set_metadata() (encore.storage.dict_memory_store.DictMemoryStore
method), 47

set_metadata() (encore.storage.dynamic_url_store.DynamicURLStore
method), 70

set_metadata() (encore.storage.filesystem_store.FileSystemStore
method), 61

set_metadata() (encore.storage.joined_store.JoinedStore
method), 77

set_metadata() (encore.storage.mounted_store.MountedStore
method), 82

set_metadata() (encore.storage.simple_auth_store.SimpleAuthStore
method), 90

set_metadata() (encore.storage.sqlite_store.SqliteStore
method), 54

set_permissions() (encore.storage.abstract_store.AbstractAuthorizingStore
method), 36

set_permissions() (encore.storage.dynamic_url_store.DynamicURLStore
method), 70

sha1_hasher() (in module en-
core.storage.simple_auth_store), 84

SimpleAuthStore (class in en-
core.storage.simple_auth_store), 84

SimpleTransactionContext (class in encore.storage.utils),
41

source (encore.storage.events.StoreEvent attribute), 37
SqliteStore (class in encore.storage.sqlite_store), 48
start() (encore.events.progress_events.ProgressManager

method), 17
StartEventType (encore.events.progress_events.ProgressManager

attribute), 16
StartEventType (encore.storage.utils.StoreProgressManager

attribute), 41
StaticURLStore (class in encore.storage.static_url_store),

62
step (encore.events.progress_events.ProgressStepEvent

attribute), 17
step (encore.storage.events.StoreProgressStepEvent at-

tribute), 39

110 Index

Encore Documentation, Release 0.7.0

step() (encore.events.progress_events.ProgressManager
method), 17

StepEventType (encore.events.progress_events.ProgressManager
attribute), 16

StepEventType (encore.storage.utils.StoreProgressManager
attribute), 42

steps (encore.events.progress_events.ProgressStartEvent
attribute), 17

steps (encore.storage.events.StoreProgressStartEvent at-
tribute), 39

StoreDeleteEvent (class in encore.storage.events), 38
StoreEvent (class in encore.storage.events), 37
StoreKeyEvent (class in encore.storage.events), 38
StoreModificationEvent (class in encore.storage.events),

38
StoreProgressEndEvent (class in encore.storage.events),

39
StoreProgressEvent (class in encore.storage.events), 38
StoreProgressManager (class in encore.storage.utils), 41
StoreProgressStartEvent (class in encore.storage.events),

39
StoreProgressStepEvent (class in encore.storage.events),

39
StoreSetEvent (class in encore.storage.events), 38
StoreUpdateEvent (class in encore.storage.events), 38
synchronized() (in module en-

core.concurrent.threadtools), 93

T
tee() (in module encore.storage.utils), 40
to_bytes() (encore.storage.abstract_store.AbstractReadOnlyStore

method), 30
to_bytes() (encore.storage.dict_memory_store.DictMemoryStore

method), 48
to_bytes() (encore.storage.filesystem_store.FileSystemStore

method), 61
to_bytes() (encore.storage.joined_store.JoinedStore

method), 78
to_bytes() (encore.storage.simple_auth_store.SimpleAuthStore

method), 90
to_bytes() (encore.storage.sqlite_store.SqliteStore

method), 54
to_bytes() (encore.storage.static_url_store.StaticURLStore

method), 66
to_file() (encore.storage.abstract_store.AbstractReadOnlyStore

method), 31
to_file() (encore.storage.dict_memory_store.DictMemoryStore

method), 48
to_file() (encore.storage.filesystem_store.FileSystemStore

method), 61
to_file() (encore.storage.joined_store.JoinedStore

method), 78
to_file() (encore.storage.simple_auth_store.SimpleAuthStore

method), 90

to_file() (encore.storage.sqlite_store.SqliteStore method),
54

to_file() (encore.storage.static_url_store.StaticURLStore
method), 66

transaction() (encore.storage.abstract_store.AbstractStore
method), 35

transaction() (encore.storage.dict_memory_store.DictMemoryStore
method), 48

transaction() (encore.storage.dynamic_url_store.DynamicURLStore
method), 71

transaction() (encore.storage.filesystem_store.FileSystemStore
method), 62

transaction() (encore.storage.joined_store.JoinedStore
method), 78

transaction() (encore.storage.mounted_store.MountedStore
method), 82

transaction() (encore.storage.sqlite_store.SqliteStore
method), 54

U
update_index() (encore.storage.static_url_store.StaticURLStore

method), 67
update_metadata() (en-

core.storage.abstract_store.AbstractStore
method), 35

update_metadata() (en-
core.storage.dict_memory_store.DictMemoryStore
method), 48

update_metadata() (en-
core.storage.dynamic_url_store.DynamicURLStore
method), 71

update_metadata() (en-
core.storage.filesystem_store.FileSystemStore
method), 62

update_metadata() (en-
core.storage.joined_store.JoinedStore method),
79

update_metadata() (en-
core.storage.mounted_store.MountedStore
method), 83

update_metadata() (en-
core.storage.simple_auth_store.SimpleAuthStore
method), 91

update_metadata() (en-
core.storage.sqlite_store.SqliteStore method),
54

update_permissions() (en-
core.storage.abstract_store.AbstractAuthorizingStore
method), 36

update_permissions() (en-
core.storage.dynamic_url_store.DynamicURLStore
method), 71

user_tag (encore.storage.abstract_store.AbstractAuthorizingStore
attribute), 37

Index 111

Encore Documentation, Release 0.7.0

V
Value (class in encore.storage.abstract_store), 27

112 Index

	Packages
	Prerequisites
	Contents
	Indices and tables
	License
	util.human_date module
	concurrent.futures.enhanced_thread_pool_executor
	Python Module Index

