

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Encore 0.7.1.dev documentation

EnCore - A collection of core-level utility modules

[image: Build status]
 [https://travis-ci.org/enthought/encore][image: Coverage status]
 [https://coveralls.io/r/enthought/encore]This package consists of a collection of core utility packages useful for
building Python applications. This package is intended to be at the
bottom of the software stack and have zero required external dependencies
aside from the Python Standard Library.

Packages

Events: A package implementing a lightweight application-wide Event dispatch system. Listeners
can subscribe to events based on Event type or by filtering on event attributes. Typical uses
include UI components listening to low-level progress notifications and change notification for
distributed resources.

Storage: Abstract base classes and concrete implementations of a basic key-value storage API.
The API is intended to be general purpose enough to support a variety of local and remote storage
systems.

Concurrent: A package of tools for handling concurrency within applications.

Terminal: Some utilities for working with text-based terminal displays.

Prerequisites

	Python >= 2.7 or Python >= 3.4

	Sphinx, graphviz, pydot (documentation build)

	Some optional modules have dependencies on:
	Requests (http://docs.python-requests.org/en/latest/)

	Futures (https://code.google.com/p/pythonfutures/)

Contents

	Events

	Storage

	Concurrent Package

Indices and tables

	Index

	Module Index

	Search Page

License

This software is OSI Certified Open Source Software.
OSI Certified is a certification mark of the Open Source Initiative.

Unless otherwise noted:

Copyright (c) 2011, Enthought, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Enthought, Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

util.human_date module

Copyright 2009 Jai Vikram Singh Verma (jaivikram[dot]verma[at]gmail[dot]com)
Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied.
See the License for the specific language governing permissions
and limitations under the License.

concurrent.futures.enhanced_thread_pool_executor

Copyright 2009 Brian Quinlan. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

Events

The encore.events module provides a unified event system for
application-level events. This is intended to be distinct from the event
systems provided by UI toolkits or Traits, although there is nothing stopping
an implementation from using such for a back-end.

Contents

	Usage
	Event Classes

	Event Managers

	Listeners

	Listener Priority

	Filtering

	Example: Progress Bar

	Advanced Features

	Abstract Event Manager API
	Events

	Event Manager Implementation

	Progress Events

Indices and tables

	Index

	Module Index

	Search Page

License

This software is OSI Certified Open Source Software.
OSI Certified is a certification mark of the Open Source Initiative.

Unless otherwise noted:

Copyright (c) 2011, Enthought, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Enthought, Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

util.human_date module

Copyright 2009 Jai Vikram Singh Verma (jaivikram[dot]verma[at]gmail[dot]com)
Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied.
See the License for the specific language governing permissions
and limitations under the License.

concurrent.futures.enhanced_thread_pool_executor

Copyright 2009 Brian Quinlan. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Events

Usage

The encore.events package provides a fairly straightforward event
dispatcher.

Event Classes

Basic filtering is based upon the class of the event, so most users
will want to define their own set of event classes, but a number of standard
BaseEvent subclasses are provided by the module. An event class can
be as simple as:

from encore.events.api import BaseEvent

class SaveEvent(BaseEvent):
 """ Event generated when a file is saved

 Attributes

 directory : path
 The directory that the file that was saved in.
 filename : string
 The name of the file that was saved.

 """

The BaseEvent‘s __init__() method takes any
additional keyword arguments it is supplied, and adds them as attributes on the
object. Every event has a source object which is the object which generated the
event. You can create an instance of an event like so:

event = SaveEvent(source=obj, directory='foo/bar', filename='baz.txt')

Because filtering of events respects the class heirarchy of events, you will
frequently want to define some abstract base classes to assist with filtering:

from encore.events.api import BaseEvent

class FileEvent(BaseEvent):
 """ Event generated when a file is operated upon

 Attributes

 directory : path
 The directory that the file that was saved in.
 filename : string
 The name of the file that was saved.

 """

class OpenEvent(FileEvent):
 pass

class SaveEvent(FileEvent):
 pass

class DeleteEvent(FileEvent):
 pass

In the above example, you will probably never generate an instance of
FileEvent, but you may set up listeners for such events.

Event Managers

To emit events, you will then need to ensure that your application has a
(usually unique) event manager to handle the dispatch of events. Creating an
event manager is straightforward:

from encore.events.api import EventManager

event_manager = EventManager()

More typically you will have some sort of global application state object that
is responsible for managing things like event managers, and then you might use
it as follows:

import os
from uuid import uuid4
from encore.events.api import EventManager, ProgressManager
from .app_events import SaveEvent

class App(object):
 def __init__(self):
 self.event_manager = EventManager()

class File(object):
 def __init__(self, app, directory, filename, data=''):
 self.app = app
 self.directory = directory
 self.filename = filename
 self.data = data

 def save(self):
 event_manager = self.app.event_manager
 path = os.path.join(self.directory, self.filename)
 op_id = uuid4()
 try:
 with open(path, 'wb') as fp:
 steps = range(0, len(data), 2**20)
 with ProgressManager(event_manager, self, op_id,
 'Saving "%s"' % path, len(steps)) as progress:
 for i, pos in enumerate(step):
 fp.write(self.data[i:i+2**20])
 progress('Saving "%s" (%d of %d bytes)' % (path, pos, len(data)),
 step=i+1)
 else:
 event_manager.emit(SaveEvent(source=self, directory=self.directory,
 filename=self.filename))

Notice the use of the standard ProgressManager subclasses to generate
progress update events while writing out the data.

Listeners

A listener is simply a function which expects to be given an event instance and
does something with it. For example, we could write a listener which listens
for SaveEvents and logs them to a logger:

import logging
import os

logger = logging.getLogger(__name__)

def save_logger(event):
 path = os.path.join(event.directory, event.filename)
 logger.info("Saved file '%s'" % path)

Once you have a listener, it can be connected to listen for particular classes
of events via the event manager:

event_manager.connect(SaveEvent, save_logger)

Once the listener is connected, the save_logger() function will be
called every time that a SaveEvent is emitted. A listener can be
explicitly disconnected by calling the disconnect() method of the event
manager:

event_manager.disconnect(SaveEvent, save_logger)

A listener which is a bound method will be disconnected automatically if the
underlying instance has been garbage-collected, so in many instances you will
not need to worry about explicitly disconnecting listeners.

In the above example, you would be more likely to want to log all
FileEvents rather than save events. This could be achieved by
something like:

def file_event_logger(event):
 path = os.path.join(event.directory, event.filename)
 logger.info("%s: file '%s'" % (event.__class__.__name__, path))

event_manager.connect(FileEvent, file_event_logger)

This will call the file_event_logger() function every time that a
subclass of FileEvent is emitted.

Listener Priority

It is possible to have multiple listeners on a particular class, and you may
want some listeners to run before other listeners. In particular, a listener
may mark an event as “handled” in which case processing stops and all lower
priority listeners do not get to see the event.

For instance, in the above example, we might want to have both the
save_logger() and file_event_logger() active. In that case we
don’t want to have save events logged twice, so we can do the following:

def save_logger(event):
 path = os.path.join(event.directory, event.filename)
 logger.info("Saved file '%s'" % path)
 event.mark_as_handled()

event_manager.connect(SaveEvent, save_logger, priority=100)
event_manager.connect(FileEvent, file_event_logger, piority=50)

By setting the priority of save_logger() higher than that of
file_event_logger(), it will get called first, and when it calls the
event’s mark_as_handled() method then it will prevent any
lower-priority events from firing.

In the default event manager implementation, listeners of the same priority are
called in the order in which they were connected.

Filtering

On occassion a listener may only care about events from certain sources or
matching certain attributes. The event manager allows a filter to be specified
when connecting a listener, so that the listener will only be called when the
filter is matched.

A filter is simply specified as a dictionary of event attribute, value pairs:

class Project(object):
 def __init__(self, app, directory):
 self.app = app
 self.directory = directory
 self._needs_compile = False
 self._connect_listener()

 def directory_listener(self, event):
 self._needs_complie = True

 def _connect_listener(self):
 self.app.event_manager.connect(SaveEvent, self.directory_listener,
 filter={'directory': self.directory})

In this example, a Project instance will have its
directory_watcher() method called whenever a file is saved in the
directory specified by its directory attribute.

Example: Progress Bar

As an example which ties together the concepts which have been shown so far,
we will write some code which displays progress indications to standard out
that look something like the following:

Saving "foo/bar/baz.txt":
[*************************************

We start with a class which is responsible for listening for the start of a
progress event. For simplicty we will assume that there will only be one
progress sequence happening at any given time, so we will have the class instance
hook up a listener for ProgressStartEvents:

class ProgressDisplay(object):
 def __init__(self, event_manager):
 self.event_manager = event_manager
 self.event_manager.connect(ProgressStartEvent, self.start_listener)

When a ProgressStartEvent occurs, then we will print out the initial
text, and set up a listener for the ProgressStepEvent and
ProgressEndEvent event types:

def start_listener(self, event):
 # display initial text
 sys.stdout.write(event.message)
 sys.stdout.write(':\n[')
 sys.stdout.flush()

 # create a ProgressWriter instance
 writer = ProgressWriter(self, event.operation_id, event.steps)
 self.writers[event.operation_id] = writer

 # connect listeners
 self.event_manager.connect(ProgressStepEvent, writer.step_listener,
 filter={'operation_id': event.operation_id})
 self.event_manager.connect(ProgressEndEvent, writer.end_listener,
 filter={'operation_id': event.operation_id})

The writer class handles listening for step and end events. The end event
listener simply removes the writer object from the display, which will cause it
to eventually be garbage-collected and the listeners disconnected automatically:

class ProgressWriter(object):
 def __init__(self, display, operation_id, steps):
 self.display = display
 self.operation_id = operation_id
 self.steps = steps
 self._count = 0
 self._max = 75

 def step_listener(self, event):
 stars = int(round(float(event.step)/self.steps*self._max))
 if stars > self._count:
 sys.stdout.write('*'*(stars-self._count))
 sys.stdout.flush()
 self._count = stars

 def end_listener(self, event):
 if event.exit_state == 'normal':
 sys.stdout.write(']\n')
 sys.stdout.flush()
 else:
 sys.stdout.write('\n')
 sys.stdout.write(event.exit_state.upper())
 sys.stdout.write(': ')
 sys.stdout.write(event.message)
 sys.stdout.write('\n')
 sys.stdout.flush()
 del self.display[self.operation_id]

Advanced Features

Disabling Events

The event manager has methods that allow code to temporarily disable events
of a certain class. These are accessed via the disable(),
enable(), and is_enabled() methods.
Disabling an event class will also disable any of its subclasses, so:

event_manager.disable(BaseEvent)

will disable all events.

Enabled/disabled state is kept track of on a per-class basis, so after:

event_manager.disable(SaveEvent)
event_manager.disable(FileEvent)
event_manager.enable(FileEvent)

the SaveEvent events will still be disabled.

Pre- and Post-Emit Callbacks

The event classes also have two hooks pre_emit() and
post_emit() which get called immediately before and
immediately after dispatch to listeners. This potentially allows Event code to
perform actions based upon interactions with listeners, such as having a
post_emit() method which does something sensible if an
event is not handled. These hooks may also be of use for instrumenting and
debugging code.

Threading

By default events are processed on the thread that they were emitted on, and
the connect(), disconnect()
and emit() methods should be thread-safe. Processing
an event blocks that thread from further work until all listeners have been
called.

The emit() method has an optional argument block
which if False will cause the emit method to create a worker thread to
perform the listener dispatch, and will return that thread from the function
call.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Events

Abstract Event Manager API

This module defines event manager class API.

The main class of the module is the BaseEventManager.
Event managers are expected to implement the interface as specified by
BaseEventManager. A concrete implementation is present in the
event_manager
module.

	
class encore.events.abstract_event_manager.BaseEventManager

	This abstract class defines the API for Event Managers.

	
connect(cls, func, filter=None, priority=0)

	Add a listener for the event.

	Parameters:	
	cls (class) – The class of events for which the listener is registered.

	func (callable [http://docs.python.org/library/functions.html#callable]) – A callable to be called when the event is emitted. The function
should expect one argument which is the event instance which was
emitted.

	filter (dict [http://docs.python.org/library/stdtypes.html#dict]) – Filters to match for before calling the listener. The listener is
called only when the event matches all of the filter .

	Filter specification:

	
	
	key: string which is extended (. separated) name of an

	attribute of the event instance.

	value: the value of the specified attribute.

If the attribute does not exist then the filter is considered failed
and the listener is not called.

	priority (int [http://docs.python.org/library/functions.html#int]) – The priority of the listener. Higher priority listeners are called
before lower priority listeners.

Note

The filtering is added so that future optimizations can be done
on specific events with large number of handlers. For example there
should be a fast way to filter key events to specific listeners rather
than iterating through all listeners.

	
disable(cls)

	Disable the event from generating notifications.

	Parameters:	cls (class) – The class of events which we want to disable.

	
disconnect(cls, func)

	Disconnects a listener from being notified about the event’

	Parameters:	
	cls (class) – The class of events for which the listener is registered.

	func (callable [http://docs.python.org/library/functions.html#callable]) – The callable which was registered for that class.

	Raises:	KeyError - if func is not already connected.

	
emit(event, block=True)

	Notifies all listeners about the event with the specified arguments.

	Parameters:	
	event (instance of BaseEvent) – The BaseEvent instance to emit.

	block (bool [http://docs.python.org/library/functions.html#bool]) – Whether to block the call until the event handling is finished.
If block is False, the event will be emitted in a separate thread
and the thread will be returned, so you can later query its status
or do wait() on the thread.

Note

Listeners of superclasses of the event are also called.
Eg. a BaseEvent listener will also be notified about any
derived class events.

	
enable(cls)

	Enable the event again to generate notifications.

	Parameters:	cls (class) – The class of events which we want to enable.

	
is_enabled(cls)

	Check if the event is enabled.

	Parameters:	cls (class) – The class of events which we want check the status of.

Events

The module also provides the base class for all event objects.

	
class encore.events.abstract_event_manager.BaseEvent(source=None, **kwargs)

	Base class for all events.

	Parameters:	
	source (object [http://docs.python.org/library/functions.html#object]) – The object which generated the Event.

	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Additional Event attributes which will be added to the Event object.

	
mark_as_handled()

	Mark the event as handled so subsequent listeners are not notified.

	
post_emit()

	Called after emitting an event.

Can be used any event specific functionality, post event validation etc.

	
pre_emit()

	Called before emitting an event.

Can be used any event specific functionality, validation etc.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Events

Event Manager Implementation

This module defines an event registry, notification and filtering class.

The main class of the module is the EventManager.

	
class encore.events.event_manager.EventManager

	A single registry point for all application events.

	
connect(cls, func, filter=None, priority=0)

	Add a listener for the event.

	Parameters:	
	cls (class) – The class of events for which the listener is registered.

	func (callable [http://docs.python.org/library/functions.html#callable]) – A callable to be called when the event is emitted. The function
should expect one argument which is the event instance which was
emitted.

	filter (dict [http://docs.python.org/library/stdtypes.html#dict]) – Filters to match for before calling the listener. The listener is
called only when the event matches all of the filter .

	Filter specification:

	
	key: string which is name of an attribute of the event instance.

	value: the value of the specified attribute.

	priority (int [http://docs.python.org/library/functions.html#int]) – The priority of the listener. Higher priority listeners are called
before lower priority listeners.

Note

Reconnecting an already connected listener will disconnect the
old listener. This may have rammifications in changing the filters
and the priority.

The filtering is added so that future optimizations can be done
on specific events with large number of handlers. For example there
should be a fast way to filter key events to specific listeners rather
than iterating through all listeners.

	
disable(cls)

	Disable the event from generating notifications.

	Parameters:	cls (class) – The class of events which we want to disable.

	
disconnect(cls, func)

	Disconnects a listener from being notified about the event’

	Parameters:	
	cls (class) – The class of events for which the listener is registered.

	func (callable [http://docs.python.org/library/functions.html#callable]) – The callable which was registered for that class.

	Raises:	KeyError - if func is not already connected.

	
emit(event, block=True)

	Notifies all listeners about the event with the specified arguments.

	Parameters:	
	event (instance of BaseEvent) – The BaseEvent instance to emit.

	block (bool [http://docs.python.org/library/functions.html#bool]) – Whether to block the call until the event handling is finished.
If block is False, the event will be emitted in a separate thread
and the thread will be returned, so you can later query its status
or do wait() on the thread.

Note

Listeners of superclasses of the event are also called.
Eg. a BaseEvent listener will also be notified about any
derived class events.

	
enable(cls)

	Enable the event again to generate notifications.

	Parameters:	cls (class) – The class of events which we want to enable.

	
is_enabled(cls)

	Check if the event is enabled.

	Parameters:	cls (class) – The class of events which we want check the status of.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Events

Progress Events

Events and helpers for managing progress indicators

	
class encore.events.progress_events.ProgressManager(event_manager=None, source=None, operation_id=None, message='Performing operation', steps=-1, **kwargs)

	Utility class for managing progress events

This class provides a context manager that will probably be sufficient in
most use cases. The standard method of invoking it will be something like:

with ProgressManager(event_manager, source, id, "Performing operation", steps) as progress:
 for step in range(steps):
 ... do work ...
 progress(step)

This pattern guarantees that the appropriate Start and Stop events are
always emitted, even if there is an exception.

If finer-grained control is needed, the class also provides start(), step()
and stop() methods that can be invoked in when required. In particular,
this pattern may be useful for more fine-grained exception reporting:

progress = ProgressManager(event_manager, source, id, "Performing operation", steps)
progress.start()
try:
 for step in range(steps):
 ... do work ...
 progress(step)
except ... as exc:
 progress.end(message='Failure mode 1', end_state='warning')
except ... as exc:
 progress.end(message='Failure mode 2', end_state='error')
except Exception as exc:
 progress.end(message=str(exc), end_state='exception')
else:
 progress.end(message='Success', end_state='normal')

	
StartEventType

	(ProgressStartEvent subclass)
The actual event class to use when emitting a start event. The default is ProgressStartEvent, but subclasses may choose to override.

	
StepEventType

	(ProgressStepEvent subclass)
The actual event class to use when emitting a step event. The default is ProgressStepEvent, but subclasses may choose to override.

	
EndEventType

	(ProgressEndEvent subclass)
The actual event class to use when emitting an end event. The default is ProgressEndEvent, but subclasses may choose to override.

	
__init__(event_manager=None, source=None, operation_id=None, message='Performing operation', steps=-1, **kwargs)

	Create a progress manager instance

	Parameters:	
	event_manager (EventManager instance) – The event manager to use when emitting events.

	source (any [http://docs.python.org/library/functions.html#any]) – The object that is the source of the events.

	operation_id (any [http://docs.python.org/library/functions.html#any]) – The unique identifier for the operation.

	message (string [http://docs.python.org/library/string.html#module-string]) – The default message to use for events which are emitted.

	steps (int [http://docs.python.org/library/functions.html#int]) – The number of steps. If this is not known, use -1.

	
end(message=None, exit_state='normal', **extra_kwargs)

	Emit a step event

By default creates an instance of StepEventType with the
appropriate attributes.

	Parameters:	
	message (str [http://docs.python.org/library/functions.html#str]) – The message to be passed to the event’s constructor. By default will
use self.message.

	exit_state (one of normal, warning, error or exception) – The exit_state of the event.

	extra_kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Additional arguments to be passed through to the event’s constructor.

	
start(**extra_kwargs)

	Emit a start event

By default creates an instance of StartEventType with the
appropriate attributes.

	Parameters:	extra_kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Additional arguments to be passed through to the event’s constructor.

	
step(message=None, step=None, **extra_kwargs)

	Emit a step event

By default creates an instance of StepEventType with the
appropriate attributes.

	Parameters:	
	message (str [http://docs.python.org/library/functions.html#str]) – The message to be passed to the event’s constructor. By default will
use self.message.

	step (int [http://docs.python.org/library/functions.html#int]) – The step number. By default keeps an internal step count, incremented
each time this method is called.

	extra_kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Additional arguments to be passed through to the event’s constructor.

	
class encore.events.progress_events.ProgressEvent(source=None, **kwargs)

	Abstract base class for all progress events

This class is provided so that listeners can easily listen for any type
ProgressEvent.

	
operation_id

	A unique identifier for the operation being performed.

	
message

	(string)
A human-readable describing the operation being performed.

	
class encore.events.progress_events.ProgressStartEvent(source=None, **kwargs)

	Event emitted at the start of an operation

	
operation_id

	A unique identifier for the operation being performed.

	
message

	(string)
A human-readable describing the operation being performed.

	
steps

	(int)
The number of steps in the operation. If unknown or variable, use -1.

	
class encore.events.progress_events.ProgressStepEvent(source=None, **kwargs)

	Event emitted periodically during an operation

	
operation_id

	A unique identifier for the operation being performed.

	
message

	(string)
A human-readable describing the state of the operation being performed.

	
step

	(int)
The count of the step. If unknown, use -1.

	
class encore.events.progress_events.ProgressEndEvent(source=None, **kwargs)

	Event emitted at the end of an operation

	
operation_id

	A unique identifier for the operation that is finished.

	
message

	(string)
A human-readable describing the state of the operation that ended.

	
exit_state

	(string)
A constant describing the end state of the operation. One of normal, warning, error or exception.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

Storage

The encore.storage package provides an abstract API for key-value stores,
as well as some reference implementations, utilities, and building-blocks
for creating more complex stores from simple ones.

The API is both agnostic to the type of data being stored and the
underlying data storage medium. Being agnostic to the type of data permits the
API to be used in appropriate situations other than the ones that we currently
envision for current Enthought projects, while being agnostic to the underlying
storage mechanism permits the same code to be used no matter how the data is
stored - whether in memory, a filesystem, a web service, or a SQL or NoSQL
database - permitting greater flexibility in deployment depending on user needs.

All abstractions are leaky, so we don’t anticipate that this API will cover all
possible functionality that a data store could provide, but the hope is that the
API provides a common language for the most fundamental operations, and a
baseline which can be extended as we find more commonalities in the data stores
that we develop.

Contents

	Key-Value Store Concepts
	Discussion

	Keys

	Values

	Data

	Metadata

	Connecting and Disconnecting

	Querying

	Transactions

	Events

	Notes For Writing An Implementation

	Usage
	Creating and Connecting

	Reading

	Querying

	Writing

	Transactions

	The “Multi” Methods

	Events

	Key-Value Store API

	Events
	Event Inheritance Diagram

	Utils
	File-like Interface Utilities

	Transaction Support

	Event Support

Implementations

	Memory Store

	Sqlite Store

	File System Store

	Static URL Store

	Dynamic URL Store

	Joined Store

	MountedStore

	Simple Authenticating Store

Indices and tables

	Index

	Module Index

	Search Page

License

This software is OSI Certified Open Source Software.
OSI Certified is a certification mark of the Open Source Initiative.

Unless otherwise noted:

Copyright (c) 2011, Enthought, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Enthought, Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

util.human_date module

Copyright 2009 Jai Vikram Singh Verma (jaivikram[dot]verma[at]gmail[dot]com)
Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied.
See the License for the specific language governing permissions
and limitations under the License.

concurrent.futures.enhanced_thread_pool_executor

Copyright 2009 Brian Quinlan. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Key-Value Store Concepts

The key-value store API exposes an interface on top of whatever
backend implementation is used by subclasses. This permits code which requires
access to a key-value store to use it in a uniform way without having to care about
where and how the data is stored. The API is also agnostic about what is being
stored, and so while the key use case is for egg repositories, potentially any
data values can be stored in the key-value store.

Discussion

We have seen a common need throughout client and internal development efforts at
Enthought for various ways of persistently storing data and associated metadata
and making it available within the applications we write. Over the years,
Enthought has implemented a number of different storage systems with similar
general functionality; sometimes even with multiple ones in the same project.
The particular motivation which has prompted the creation of the storage API,
and the initial use-case is a refactor of the Enstaller project to provide a
cleaner set of internal APIs.

When faced with a problem like this, it is tempting to start from the
implementation level and build a solution to the problem at hand (eg. “I need to
store eggs, so I build an egg store”). In generalizing, it is then even more
tempting to try to replace existing implementations with a more generic
implementation (eg. “I need to store eggs and apps and code blocks both locally
and remotely, so I build a NoSQL-backed data store server which I can run
locally if I need to”). However any generic implementation must make
trade-offs, and the trade-offs may end up being inappropriate for particular use
cases (eg. “Now I need to have an in-memory code-block store for efficiency, and
my store’s optimized for remote access...”).

[image: digraph diagram1 { node [shape=box, fontname=sans, fontsize=10, height=0.1, width=0.1] "Egg Store" -> "General Implementation"; "Code Block Store" -> "General Implementation"; "Configuration Store" -> "General Implementation" }]

Alternatively, it is tempting to start from the task that is being attempted
(eg. “I need to store eggs, so I build an egg store”) and then generalize the
implementation (eg. “Now I need to store eggs remotely, so I’ll build a remote
egg store, but at least I’ll use the same API”). However, again the specifics
of the implementation may make it inappropriate for particular use cases (eg.
“Now I need a code-block store, so I’ll wrap up my code-blocks as eggs and use
an egg store... but now they’re 100 times bigger than they need to be...”)

[image: digraph diagram2 { node [shape=box, fontname=sans, fontsize=10, height=0.1, width=0.1] "Egg Store API" -> "Memory Store" "Egg Store API" -> "Disk Store" "Egg Store API" -> "HTTP Store" "Egg Store API" -> "Cached Store" "Egg Store API" -> "SQL Store" }]

This storage API instead to simply provides an API through which data providers
and data consumers can talk. The API deliberately makes no assumptions about
what is being stored (eg. eggs vs. code blocks) but also makes no assumptions
about how the data is stored (eg. in memory, on disk, in a database, through a
remote server). This allows developers to re-use code more efficiently by
permitting them to choose the pieces that make sense for their particular use
case (eg. “I need an in-memory code-block store, so I’ll take my general
code-block store logic which uses the API, and my in-memory store logic which
implements the API, and join them together”). Not every combination may make
sense (an in-memory egg store is probably a bad idea, for example), but the
ability to pick and choose allows a great deal of flexibility.

[image: digraph diagram2 { node [shape=box, fontname=sans, fontsize=10, height=0.1, width=0.1] "Egg Store" -> "Key-Value Store API" "Code Block Store" -> "Key-Value Store API" "Configuration Store" -> "Key-Value Store API" "Key-Value Store API" -> "Memory Store" "Key-Value Store API" -> "Disk Store" "Key-Value Store API" -> "HTTP Store" "Key-Value Store API" -> "Cached Store" "Key-Value Store API" -> "SQL Store" }]

This also reflects the reality that developers frequently do not have complete
freedom to choose the best possible data store solution due to external
constraints. By writing to the storage API, you have the opportunity to more
easily re-use components, as well as the possibility of later replacing the
sub-optimal solution with a better one.

This approach also allows developers to write general connectors, adapters and
other building blocks for repositories which only use the API and don’t care
about what is being stored. This should permit fast prototyping of
functionality, if nothing else, but in many cases this approach may be good
enough for production code. For example, a generic joined store could be
written which takes a list of other stores which implement the API and when
asked for data from the store asks each store in sequence for the data until it
finds what is requested. To code using the joined store, it appears just like
any other store, and the joined store doesn’t care how the stores it joins are
implemented.

Keys

The keys of the key-value store are strings, and the key-value store API makes no
assumptions about what the strings represent or any structure they might have.
In particular keys are assumed to be case sensitive and may include arbitrary
characters, so key-value store implementations should be careful to handle any issues
which may arise if the underlying data store is case insensitive and has special
characters which need to be escaped.

Each key has associated with it a collection of metadata and some binary data.
The key-value store API makes no assumptions about how the metadata and data is
serialized.

Values

The values stored in the key-value store consist of two parts, a binary data
stream and a metadata dictionary. These are encapsulated into a light-weight
data-structure which can hold additional implementation-specific information.

In particular, implementations should expose attributes or properties ‘size’,
‘created’ and ‘modified’ which proved the number of bytes in the data stream,
the creation time of the key, and the most recent modification time of the key.
These additional attributes are primarily provided for internal use and to assist
composition and replication of key-value stores.

The Value should contain enough information to extract the data and metadata,
but does not have to actually open those resources until they are requested.

For writable repositories, data should be supplied to keys via a Value subclass,
if possible. This allows copying between repositories using code like:

repo1.set(key, repo1.get(key))

or copying between keys with code like:

repo.set(key1, repo.get(key2))

Since files are likely to be common targets for extracting data from values, or
sources for data being stored, the key-value store API provides utility methods
to_file() and from_file(). Simple default implementations of these methods are
provided, but implementations of the key-value store API may be able to override
these to be more efficient, depending on the nature of the back-end data store.

For backwards compatibility, value objects express an API that makes them appear
as a 2-tuple of (data, metadata).

Data

The binary data stored in the values is presented through the key-value store API as
file-like objects which implement at least read(), close(), __enter__() and
__exit__() methods as well as having attributes which provide some amount of
information about the stream, such as length, last modification time, creation
time, and so forth. Particular backends may choose to provide additional
attributes or implement additional methods as needed.

Frequently this will be a wrapper around a standard file, StringIO object, a
urllib file-like object or other wrapper about a socket. The read() method
should accept an optional number of bytes to read, so that buffered reads can be
performed.

The key-value store API gives no special meaning to the bytes stored in the value.
However care should be taken that it is in fact bytes being stored, and not a
(possibly unicode) string; in particular, if an actual file is being used it should
be opened in binary mode.

Metadata

Metadata should be representable as a dictionary whose keys are valid Python
identifiers, and whose values can be serialized into reasonable human-readable
form (basically, you should be able to represent the dictionary as JSON, XML,
YAML, or similar in a clear and sane way, because some underlying datastore
will).

Metadata can be retrieved via the get_metadata() method or as the second element
of the tuple returned by get(). Metadata can be set using set() or
set_metadata() and existing metadata can be modified using
update_metadata() (similarly to the way that the update() method works
for dictionaries).

There is nothing that ensures that metadata and the corresponding data are
synchronised for a particular object. It is up to the user of the API to ensure
that the metadata for stored data is correct.

We currently make no assumptions about the metadata keys, but we expect
conventions to evolve for the meanings and format of particular keys. Given
that this is generally thought of as a repository for storing eggs, the
following metadata keys are likely to be available:

	type

	The type of object being stored (package, app, patch, video, etc.).

	name

	The name of the object being stored.

	version

	The version of the object being stored.

	arch

	The architecture that the object being stored is for.

	python

	The version of Python that the object being stored is for.

	ctime

	The creation time of the object in the repository in seconds since
the Unix Epoch.

	mtime

	The last modification time of the object in the repository in seconds
since the Unix Epoch.

	size

	The size of the binary data in bytes.

Note that there is a difference in intent between the information stored in the
metadata and the attributes on the value object: value object attributes are
controlled by the key-value store implementation, whereas metadata are completely
arbitrary from the point of view of the key-value store and are completely up
to the user code as to what information is stored.

Connecting and Disconnecting

Before a store can be used, its connect() method must be called to allow any
long-lived resources to be allocated and prepared for use, and to optionally
handle any authentication that might be required.

Conversely, the store’s disconnect() method should be called when code is
done with the store, allowing it to release any long-lived resources.

Querying

A very simple querying API is provided by default. The query() method simply
takes a collection of keyword arguments and interprets them as metadata keys
and values. It returns all the keys and corresponding metadata that match all
of the supplied arguments. query_keys() does the same, but only returns the
matching keys.

Subclasses may choose to provide more sophisticated querying mechanisms.

Transactions

The base abstract key-value store has no notion of transactions, since we want to
handle the read-only and simple writer cases efficiently. However, if the
underlying storage mechanism has the notion of a transaction, this can be
encapsulated by writing a context manager for transactions. The transaction()
method returns an instance of the appropriate context manager.

Events

All implementations should have an event manager attribute, and may choose to
emit appropriate events. This is of particular importance during long-running
interactions so that progress can be displayed. This also provides a mechanism
that an implementation can use to inform listeners that new objects have been
added, or the store has been otherwise modified.

Notes For Writing An Implementation

	Metadata is really an index

	In terms of traditional database design, things that you are exposing in
metadata are really indexed columns. If you are implementing a store which
needs fast querying, you may want to look at how traditional databases do
indexing to guide your data structure choices.

	Determine the Single Points of Truth

	Every piece of data should have a single point of truth - a canonical place
which holds the correct value. This is particularly true for metadata.

	Testing

	There are standard test suites that can validate that a store is working
as expected by the API. When writing an implementation of the API, you
can subclass the tests and write appropriate setUp and tearDown methods that
will put the store into the correct state.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Usage

The key-value store API gives a common API that can be used with a variety of
different backends to provide a consistent interface for storage. If used
correctly you can swap out the backend used with little or no modification of
the user code.

Creating and Connecting

Before you use a store, you need to create an instance of the appropriate type,
and then connect to it, possibly authenticating if that is required. For
example, the following connects to a read-only remote store via HTTP, using
HTTP Authentication:

from encore.events.api import EventManager
from encore.storage.static_url_store import StaticURLStore

event_manager = EventManager()
store = StaticURLStore(event_manager, 'http://localhost:8080/', 'data', 'index.json')
store.connect(credentials={'username': 'alibaba', password: 'Open Sesame'})

At this point the store is ready to use. You can check to see whether the store
has connected using the is_connected() method. When you are finished
with a store, you should call its disconnect() method to allow it to
cleanly release any resources it may be using, such as database connections.

Reading

To read from a store, you use one of the get()
methods:

value = store.get('my_document')
datastream = value.data
metadata = value.metadata

In this case datastream is a file-like object that streams bytes:

data = datastream.read()
print data

More likely you will have used some sort of serialization format like XML, JSON
or YAML to store your data in the document, so instead you can do:

import json
data = json.load(datastream)

If the data is raw bytes to store into a numpy array, you can do something like
this:

import numpy
data = datastream.read()
dtype = numpy.int32
size = len(data)/dtype().nbytes
arr = numpy.empty(shape=size, dtype=dtype)
arr.data[:] = data

The read() method supports buffered reads if your data is
larger than would comfortably fit into memory.

If you need to support random-access streaming, the value API also supports
a range(start, end)() method that return the requested
bytes as a readable stream.

The metadata stores auxilliary information about the data that is stored in the
key. It is a dictionary of reasonably serializable values (frequently it will
serialize to JSON or similar format):

print 'Document title:', metadata['title']
print 'Document author:', metadata['author']
print 'Document encoding:', metadata['encoding']

checksum
import hashlib
assert hashlib.sha1(document.read()).digest() == metadata['sha1']

What metadata is stored is completely dependent on the use-case for the key-value
store: the key-value store makes no assumptions.

If you try to read a key which doe not exist, then the store will raise a KeyError.
If you want to see whether or not a particular key is populated, you can use the
exists() method.

Frequently you will only be interested in the data or the metadata, not both.
For these cases there are methods get_data() and get_metadata()
which return the appropriate entities. For metadata, if you are only interested
in the values of some of the dictionary keys, you can supply an additional argument
select which will restrict the returned keys to this subset of all the keys:

author_info = store.get_metadata(‘document’, select=[‘author’, ‘organization’])

It is very common that you either want to extract the stream of bytes from a value
into a Python bytes object (ie. a string in Python 2, as opposed to unicode) or
into a file on the local filesystem. Two utility methods to_file()
and to_bytes() are provided which perform these operations. If the
data source is larger than will comfortably fit into memory (particularly for
to_file()) you can supply an optional buffer size:

store.to_file('document', 'local_document.txt', buffer=8096)

Querying

Frequently you want to find keys whose metadata match certain criteria. The
key-value store API gives a simple query mechanism that permits this sort of
matching:

for key, metadata in store.query(author='alibaba', organization='40 Thieves'):
 print key, ':', metadata['title']

This will print the key and title of all documents which have an author key
with value 'alibaba' and an organization key with value '40 Thieves'.
The current API only permits querying for exact matches and matching all of the
query terms. More complex queries would need to be performed on an ad-hoc basis
on top of this API.

If all the user is concerned with is which keys match, there is an alternative
method query_keys():

for key in store.query_keys(author='alibaba', organization='40 Thieves'):
 print key

To iterate over all the keys in a store, you can simply call query_keys()
with no arguments:

for key in store.query_keys():
 print key

Finally, as a useful utility, you can use glob-style matching on the keys using
the glob() method:

for key in store.glob('*.jpg'):
 print key

Writing

Most, but not all, stores also allow you to write data to keys. The basic method
is set() which is the inverse of get(). It expects a
file-like object with a read() method that can do buffering, and a
dictionary of metadata as arguments:

from cStringIO import StringIO

data = StringIO("Hello World")
metadata = {'title': "Greeting", 'author': 'alibaba'}
store.set('hello', (data, metadata))

As with reading, there are methods set_data() and set_metadata()
that permit you to set just one of the two parts of the value, and there are
utility methods from_bytes() and from_file() that populate
the data of a key from either a byte string or a binary file. The latter two
methods do not set any metadata: that must be done manually if needed.

If you want to add to the metadata without overwriting it, there is a convenience
method update_metadata() method that will update the
metadata dictionary in mych the same way that the standard Python dictionary’s
update method works.

You can delete a key with the delete() method:

store.delete('hello')

Transactions

The key-value store API does not assume that the underlying storage mechanism
has a notion of transactions, but if it does then it can be supported by the
key-value store. Transactions are handled by context managers and the with
statement:

with store.transaction('Setting some values'):
 store.set('key1', (data1, metadata1))
 store.set('key2', (data2, metadata2))

If any exception were to occur in the with statement, the context manager will
ensure that the transaction gets rolled back. Otherwise the transaction will
be committed when the with statement finishes.

Transactions are re-entrant, so it is safe to do the following:

def add_keypair(keypair):
 with store.transaction('Adding keypair'):
 store.set(keypair.key1, (keypair.data1, keypair.metadata1))
 store.set(keypair.key2, (keypair.data2, keypair.metadata2))

def add_many_keypairs(keypairs):
 with store.transaction('Adding many keypairs'):
 for keypair in keypairs:
 add_keypair(keypair)

The transaction in the function is effectively ignored, with only the outermost
transaction applying.

The “Multi” Methods

For convenience there are a collection of methods prefixed by “multi”, such as
multiget() and multiset_data(),
which perform the specified operations on a collection of keys at once. If
transactions are available, then these will be done as a single transaction.

Events

The various stores use the Encore event system, which is why the stores must
be supplied with a reference to an EventManager instance. The events which are
emitted are referenced in the documentation for each method.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Key-Value Store API

This module specifies the key-value store API for the various package management and
installation systems that are in use at Enthought and our clients.

The key-value store API exposes an interface on top of whatever
backend implementation is used by subclasses. This permits code which requires
access to a key-value store to use it in a uniform way without having to care about
where and how the data is stored. The API is also agnostic about what is being
stored, and so while the key use case is for egg repositories, potentially any
data values can be stored in the key-value store.

	
class encore.storage.abstract_store.Value

	Abstract base class for file-like objects used by Key-Value stores

	size : int

	The size of the data in bytes, or None if a continuous stream or unknown.

	created : timestamp

	The creation time of the key as a floating point UTC timestamp in seconds
after the Unix Epoch.

	modified : timestamp

	The modification time of the key as a floating point UTC timestamp in seconds
after the Unix Epoch.

	
data

	The byte stream of data contained in the value

	
iterdata(buffer_size=1048576, progress=None)

	Return an iterator over the data stream

	
metadata

	The metadata dictionary of the value

	
permissions

	The permissions dictionary of the value

This is only available if the user has ownership privileges for the key.
Because different stores have different permission conventions, this
will not be used when setting a value.

	
range(start=None, end=None)

	Return a stream with a range of bytes from the data

	
class encore.storage.abstract_store.AbstractReadOnlyStore

	Abstract base class for read-only Key-Value Store API

This class implements some of the API so that it can be used with super()
where appropriate.

	
event_manager

	Every store is assumed to have an event_manager attribute which implements the BaseEventManager API.

	
connect(credentials=None)

	Connect to the key-value store, optionally with authentication

This method creates or connects to any long-lived resources that the
store requires.

	Parameters:	credentials – An object that can supply appropriate credentials to to authenticate
the use of any required resources. The exact form of the credentials
is implementation-specific, but may be as simple as a
(username, password) tuple.

	Raises:	AuthorizationError - If the credentials are not valid, this error will be raised.

	
disconnect()

	Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the
store requires.

	
exists(key)

	Test whether or not a key exists in the key-value store

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	exists (bool) - Whether or not the key exists in the key-value store.

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	value (instance of Value) - An instance of a Value subclass which holds references to the data, metadata and other information about the key.

	Raises:	KeyError - If the key is not found in the store, a KeyError is raised.

	
get_data(key)

	Retrieve a stream from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
get_data_range(key, start=None, end=None)

	Retrieve a partial stream from a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	start (int or None) – The first byte to return

	end (int or None) – The last byte of to return

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
get_metadata(key, select=None)

	Retrieve the metadata for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the result. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadata (dict) - A dictionary of metadata associated with the key. The dictionary has keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
glob(pattern)

	Return keys which match glob-style patterns

	Parameters:	pattern (string [http://docs.python.org/library/string.html#module-string]) – Glob-style pattern to match keys with.

	Returns:	result (iterable) - A iterable of keys which match the glob pattern.

	
is_connected()

	Whether or not the store is currently connected

	Returns:	connected (bool) - Whether or not the store is currently connected.

	
multiget(keys)

	Retrieve the data and metadata for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_data(keys)

	Retrieve the data for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of file-like) - An iterator of file-like data objects corresponding to the keys.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_metadata(keys, select=None)

	Retrieve the metadata for a collection of keys in the key-value store.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the results. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated with the key. The dictionaries have keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
query(select=None, **kwargs)

	Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of metadata for the key-value store.

	Parameters:	
	select (iterable of strings or None) – An optional list of metadata keys to return. If this is not None,
then the metadata dictionaries will only have values for the specified
keys populated.

	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of (key, metadata) tuples where metadata matches all the specified values for the specified metadata keywords. If a key specified in select is not present in the metadata of a particular key, then it will not be present in the returned value.

	
query_keys(**kwargs)

	Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially
more efficiently implemented.

	Parameters:	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of key-value store keys whose metadata matches all the specified values for the specified metadata keywords.

	
to_bytes(key, buffer_size=1048576)

	Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a bytes
object. The default implementation uses the get() method
together with chunked reads from the returned data stream and join.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Returns:	bytes - The contents of the file-like object as bytes.

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to extracting the data.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is extracted.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after extracting the data.

	
to_file(key, path, buffer_size=1048576)

	Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a path
in the filesystem. The default implementation uses the get() method
together with chunked reads from the returned data stream to the disk.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to store the data to.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to disk.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to disk.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to disk.

	
class encore.storage.abstract_store.AbstractStore

	Abstract base class for Key-Value Store API

This class implements some of the API so that it can be used with super()
where appropriate.

	
event_manager

	Every store is assumed to have an event_manager attribute which implements the BaseEventManager API.

	
delete(key)

	Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Events:	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key.

	
from_bytes(key, data, buffer_size=1048576)

	Efficiently store a bytes object as the data associated with a key.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from a bytes object to the underlying
data store. The default implementation uses the set() method
together with a cStringIO.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (bytes) – The data as a bytes object.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
from_file(key, path, buffer_size=1048576)

	Efficiently read data from a file into a key in the key-value store.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from a path in the filesystem to the
underlying data store. The default implementation uses the set() method
together with chunked reads from the disk which are fed into the data
stream.

This makes no attempt to set metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to read the data from.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
multiset(keys, values, buffer_size=1048576)

	Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and values have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	values (iterable of (file-like, dict) tuples) – An iterator that provides the (data, metadata) pairs for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_data(keys, datas, buffer_size=1048576)

	Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and datas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	datas (iterable of file-like objects) – An iterator that provides the data file-like objects for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_metadata(keys, metadatas)

	Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiupdate_metadata(keys, metadatas)

	Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
set(key, value, buffer_size=1048576)

	Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	value (instance of Value) – An instance of a Value subclass.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_data(key, data, buffer_size=1048576)

	Replace the data for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (file-like) – A readable file-like object the that provides stream of data from the
key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
transaction(notes)

	Provide a transaction context manager

Implementations which have no native notion of transactions may choose
not to implement this.

This method provides a context manager which creates a data store
transaction in its __enter__() method, and commits it in its __exit__()
method if no errors occur. Intended usage is:

with repo.transaction("Writing data..."):
 # everything written in this block is part of the transaction
 ...

If the block exits without error, the transaction commits, otherwise
the transaction should roll back the state of the underlying data store
to the start of the transaction.

	Parameters:	notes (string [http://docs.python.org/library/string.html#module-string]) – Some information about the transaction, which may or may not be used
by the implementation.

	Returns:	transaction (context manager) - A context manager for the transaction.

	Events:	
	StoreTransactionStartEvent - This event should be emitted on entry into the transaction.

	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreTransactionEndEvent - This event should be emitted on successful conclusion of the transaction, before any Set or Delete events are emitted.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set during the transaction.

	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key for all deleted keys.

	
update_metadata(key, metadata)

	Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the
provided metadata keys and values

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
class encore.storage.abstract_store.AbstractAuthorizingStore

	Abstract base class for Key-Value Store API with permissioning

This class implements some of the API so that it can be used with super()
where appropriate.

Permission information is available only to authenticated users who are
designated as owners of a particular key. Permissions are simply strings
representing some right that the store allows, the only required permission
being ‘owned’.

Each permission has a set of tags which are granted that permission. A tag
represents a user, group or role that will be granted that permission. The
meaning of tags is also store dependent: a filesystem-based store may have
tags for ‘user’, ‘group’ and ‘other’; while a web-based store may derive its
tags from a role-based authentication system.

	
event_manager

	Every store is assumed to have an event_manager attribute which implements the BaseEventManager API.

	
get_permissions(key)

	Return the set of permissions the user has

	Parameters:	key (str [http://docs.python.org/library/functions.html#str]) – The key for the resource which you want to know the permissions.

	Returns:	permissions (dict of str: set of str) - A dictionary whose keys are the permissions and values are sets of tags which have that permission.

	Raises:	
	KeyError - This error will be raised if the key does not exist or the user is not authorized to see it.

	AuthorizationError - This error will be raised if user is authorized to see the key, but is not an owner.

	
set_permissions(key, permissions)

	Set the permissions on a key the user owns

	Parameters:	
	key (str [http://docs.python.org/library/functions.html#str]) – The key for the resource which you want to know the permissions.

	permissions (dict of str: set of str) – A dictionary whose keys are the permissions and values are sets of
tags which have that permission. There must be an ‘owned’
permission with at least one tag.

	Raises:	
	KeyError - This error will be raised if the key does not exist or the user is not authorized to see it.

	AuthorizationError - This error will be raised if user is authorized to see the key, but is not an owner.

	
update_permissions(key, permissions)

	Add permissions on a key the user owns

The tags provided in the permissions dictionary will be added to the
existing set of tags for each permission.

	Parameters:	
	key (str [http://docs.python.org/library/functions.html#str]) – The key for the resource which you want to know the permissions.

	permissions (dict of str: set of str) – A dictionary whose keys are the permissions and values are sets of
tags which have that permission.

	Raises:	
	KeyError - This error will be raised if the key does not exist or the user is not authorized to see it.

	AuthorizationError - This error will be raised if user is authorized to see the key, but is not an owner.

	
user_tag

	A tag that represents the user

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Events

The Storage API generates events using the Encore Event API. This module defines
the event classes that are required aby the abstract API.

Event Inheritance Diagram

The following diagram shows the inheritance heirarchy of the various Event
subclasses defined in this module. When listening for events, you may want to
listen on appropriate superclasses.

[image: Inheritance diagram of encore.events.api.BaseEvent, encore.events.progress_events.ProgressEvent, encore.events.progress_events.ProgressStartEvent, encore.events.progress_events.ProgressStepEvent, encore.events.progress_events.ProgressEndEvent, StoreEvent, StoreTransactionEvent, StoreTransactionStartEvent, StoreTransactionEndEvent, StoreKeyEvent, StoreModificationEvent, StoreSetEvent, StoreUpdateEvent, StoreDeleteEvent, StoreProgressEvent, StoreProgressStartEvent, StoreProgressStepEvent, StoreProgressEndEvent]

Storage Events

This module contains asbtract and concrete Event subclasses that support the
Storage API.

	
class encore.storage.events.StoreEvent(source=None, **kwargs)

	An abstract base class for events generated by a Key-Value Store

	
source

	(Store instance)
The key-value store which generated the event.

	
class encore.storage.events.StoreKeyEvent(source=None, **kwargs)

	An abstract base class for events related to a particular key in the
store. This should provide the key and metadata (if available) of the
modified key.

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
class encore.storage.events.StoreModificationEvent(source=None, **kwargs)

	An abstract base class for modification events generated by a Key-Value Store

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
action

	(string)
The modification action that was performed. One of ‘set’, ‘update’ or ‘delete’.

	
class encore.storage.events.StoreSetEvent(source=None, **kwargs)

	An event generated when a value is set into a Key-Value Store

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
action

	(‘set’)
The modification action that was performed.

	
class encore.storage.events.StoreUpdateEvent(source=None, **kwargs)

	An event generated when a value is updated into a Key-Value Store

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
action

	(‘update’)
The modification action that was performed.

	
class encore.storage.events.StoreDeleteEvent(source=None, **kwargs)

	An event generated when a value is deleted into a Key-Value Store

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
action

	(‘delete’)
The modification action that was performed.

	
class encore.storage.events.StoreProgressEvent(source=None, **kwargs)

	Abstract base class for ProgressEvents generated by a Key-Value Store

	
operation_id

	A unique identifier for the operation being performed.

	
message

	(string)
A human-readable describing the operation being performed.

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
class encore.storage.events.StoreProgressStartEvent(source=None, **kwargs)

	
	
operation_id

	A unique identifier for the operation being performed.

	
message

	(string)
A human-readable describing the operation being performed.

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
steps

	(int)
The number of steps in the operation. If unknown or variable, use -1.

	
class encore.storage.events.StoreProgressStepEvent(source=None, **kwargs)

	
	
operation_id

	A unique identifier for the operation being performed.

	
message

	(string)
A human-readable describing the state of the operation being performed.

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
step

	(int)
The count of the step. If unknown, use -1.

	
class encore.storage.events.StoreProgressEndEvent(source=None, **kwargs)

	
	
operation_id

	A unique identifier for the operation that is finished.

	
message

	(string)
A human-readable describing the state of the operation that ended.

	
key

	(string)
The key which is involved in the event.

	
metadata

	(dict)
The metadata of the key which is involved in the event.

	
exit_state

	(string)
A constant describing the end state of the operation. One of normal, warning, error or exception.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Utils

Utilities for key-value stores.

File-like Interface Utilities

These utilities help with the management of file-like objects. In
particular buffer_iterator() is of particular use, as it produces
an iterator which generates chunks of bytes in the file-like object which
permits memory-efficient streaming of the data. This is preferred over
reading in all the data and then processing it if the data is even
moderately big.

The BufferIteratorIO class is a class whick provides a
file-like API around a buffer iterator. This is particularly useful for
Stores which wrap another store and implementing streaming filters on the
data.

	
class encore.storage.utils.BufferIteratorIO(iterator)

	A file-like object based on an iterable of buffers

This takes an iterator of bytes objects, such as produced by the
buffer_iterator function, and wraps it in a file-like interface which
is usable with the store API.

This uses less memory than a StringIO, at the cost of some flexibility.

	Parameters:	iterator (iterator of bytes objects) – An iterator that produces a bytes object on each iteration.

	
read(buffer_size=1048576)

	Read at most buffer_size bytes, returned as a string.

	
encore.storage.utils.buffer_iterator(filelike, buffer_size=1048576, progress=None, max_bytes=None)

	Return an iterator of byte buffers

The buffers of bytes default to the provided buffer_size. This is a useful
method when copying one data stream to another.

	Parameters:	
	filelike (a file-like object) – An object which implements the read(buffer_size)() method.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – The number of bytes to read at a time.

	progress (callable [http://docs.python.org/library/functions.html#callable]) – A callback for progress indication. A StoreProgressManager instance
inside a with block would be appropriate, but anthing that takes a
step parameter which is the total number of bytes read so far will
work.

	max_bytes (int [http://docs.python.org/library/functions.html#int]) – The maximum number of bytes to return.

	
encore.storage.utils.tee(filelike, n=2, buffer_size=1048576)

	Clone a filelike stream into n parallel streams

This uses itertools.tee and buffer iterators, with the corresponding
cautions about memory usage. In general it should be more memory efficient
than pulling everything into memory.

	Parameters:	
	filelike (a file-like object) – An object which implements the read(buffer_size)() method.

	n (int [http://docs.python.org/library/functions.html#int]) – The number of filelike streams to produce.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – The number of bytes to read at a time.

Transaction Support

These are two simple context managers for transactions. The
DummyTransactionContext should be used by Store implementations
which have no notion of a transaction. The
SimpleTransactionContext is a complete transaction manager
for implementations with begin/commit/rollback semantics.

	
class encore.storage.utils.DummyTransactionContext

	A dummy class that can be returned by stores which don’t support transactions

This class guarantees that there is only one transaction object for each
store instance.

	Parameters:	store (key-value store instance) – The store that this transaction context is associated with.

	
class encore.storage.utils.SimpleTransactionContext

	A simple class that adds support for simple transactions

This is a base class that ensures transactions are appropriately handled in
terms of nesting and event generation. Subclasses should override the
start, commit and rollback methods to perform appropriate implementation-specific
actions.

This class correctly handles nested transactions by ensuring that each store
has precisely one active transaction context and by tracking the number of
times the context has been entered and exited. The transaction is only
committed once the top-level context has exited.

	Parameters:	store (key-value store instance) – The store that this transaction context is associated with.

	
begin()

	Begin a transaction

By default, this calls the store’s _begin_transaction method.
Override in subclasses if you need different behaviour.

	
commit()

	Commit a transaction

By default, this calls the store’s _commit_transaction method.
Override in subclasses if you need different behaviour.

	
rollback()

	Roll back a transaction

By default, this calls the store’s _rollback_transaction method.
Override in subclasses if you need different behaviour.

Event Support

	
class encore.storage.utils.StoreProgressManager(event_manager=None, source=None, operation_id=None, message='Performing operation', steps=-1, **kwargs)

	encore.events.progress_events.ProgressManager subclass that
generates encore.storage.events.StoreProgressEvent
instances

	
EndEventType

	alias of StoreProgressEndEvent

	
StartEventType

	alias of StoreProgressStartEvent

	
StepEventType

	alias of StoreProgressStepEvent

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Memory Store

This is a simple implementation of the key-value store API that lives entirely
in memory. Data and metadata are stored in dictionaries. This is not optimized
in any way to reduce memory usage.

This class is provided in part as a sample implementation of the API.

	
class encore.storage.dict_memory_store.DictMemoryStore

	Dictionary-based in-memory Store

This is a simple implementation of the key-value store API that lives entirely
in memory. This uses a dictionary of StringValue objects to store all
relevant information about an object - data and metadata are stored in
private attributes.

The streams returned by data methods are cStringIO.StringIO objects.

	Parameters:	event_manager – An object which implements the BaseEventManager API.

	
connect(credentials=None)

	Connect to the key-value store

	Parameters:	credentials (None [http://docs.python.org/library/constants.html#None]) – This store does not authenticate, and has no external resources,
so credentials are ignored.

	
delete(key)

	Delete a key from the repsository.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Events:	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key.

	
disconnect()

	Disconnect from the key-value store

This store does not authenticate, and has no external resources, so this
does nothing

	
exists(key)

	Test whether or not a key exists in the key-value store

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	exists (bool) - Whether or not the key exists in the key-value store.

	
from_bytes(key, data, buffer_size=1048576)

	Efficiently read data from a bytes object into a key in the key-value store.

This makes no attempt to set metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (bytes) – The data as a bytes object.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – This is ignored.

	
from_file(key, path, buffer_size=1048576)

	Efficiently read data from a file into a key in the key-value store.

This makes no attempt to set metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to read the data from.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – This is ignored.

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	
	data (file-like) - A readable file-like object that provides stream of data from the key-value store

	metadata (dictionary) - A dictionary of metadata for the key.

	Raises:	KeyError - If the key is not found in the store, a KeyError is raised.

	
get_data(key)

	Retrieve a stream from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store.

	
get_metadata(key, select=None)

	Retrieve the metadata for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the result. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadata (dict) - A dictionary of metadata associated with the key. The dictionary has keys as specified by the metadata_keys argument.

	Raises:	KeyError - This will raise a key error if the key is not present in the store, and if any metadata key is requested which is not present in the metadata.

	
glob(pattern)

	Return keys which match glob-style patterns

	Parameters:	pattern (string [http://docs.python.org/library/string.html#module-string]) – Glob-style pattern to match keys with.

	Returns:	result (iterable) - A iterable of keys which match the glob pattern.

	
is_connected()

	Whether or not the store is currently connected

	Returns:	connected (bool) - Whether or not the store is currently connected.

	
multiget(keys)

	Retrieve the data and metadata for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_data(keys)

	Retrieve the data for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of file-like) - An iterator of file-like data objects corresponding to the keys.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_metadata(keys, select=None)

	Retrieve the metadata for a collection of keys in the key-value store.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the results. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated with the key. The dictionaries have keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiset(keys, values, buffer_size=1048576)

	Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and values have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	values (iterable of (file-like, dict) tuples) – An iterator that provides the (data, metadata) pairs for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_data(keys, datas, buffer_size=1048576)

	Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and datas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	datas (iterable of file-like objects) – An iterator that provides the data file-like objects for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_metadata(keys, metadatas)

	Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiupdate_metadata(keys, metadatas)

	Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
query(select=None, **kwargs)

	Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of metadata for the key-value store.

	Parameters:	
	select (iterable of strings or None) – An optional list of metadata keys to return. If this is not None,
then the metadata dictionaries will only have values for the specified
keys populated.

	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of keys, metadata tuples where metadata matches all the specified values for the specified metadata keywords.

	
query_keys(**kwargs)

	Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially
more efficiently implemented.

	Parameters:	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of key-value store keys whose metadata matches all the specified values for the specified metadata keywords.

	
set(key, value, buffer_size=1048576)

	Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	value (tuple of file-like, dict) – A pair of objects, the first being a readable file-like object that
provides stream of data from the key-value store. The second is a
dictionary of metadata for the key.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_data(key, data, buffer_size=1048576)

	Replace the data for a given key in the key-value store.

If the key does not already exist, it tacitly creates an empty metadata
object.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (file-like) – A readable file-like object the that provides stream of data from the
key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata. If the key does not already exist, it tacitly creates an
empty data object.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
to_bytes(key, buffer_size=1048576)

	Efficiently store the data associated with a key into a bytes object.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – This is ignored.

	
to_file(key, path, buffer_size=1048576)

	Efficiently store the data associated with a key into a file.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to store the data to.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – This is ignored.

	
transaction(notes)

	Provide a transaction context manager

This class does not support transactions, so it returns a dummy object.

	Parameters:	notes (string [http://docs.python.org/library/string.html#module-string]) – Some information about the transaction, which is ignored by this
implementation.

	
update_metadata(key, metadata)

	Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the
provided metadata keys and values

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Sqlite Store

This is a simple implementation of the key-value store API that lives in a sqlite
database. Each key is stored in a row which consists of the key, index columns,
metadata and data. The index columns are a specified subset of the metadata that
can be queried more quickly.

This class is provided in part as a sample implementation of the API.

	
class encore.storage.sqlite_store.SqliteStore(location=':memory:', table='store', index='dynamic', index_columns=None)

	Sqlite-based Store

The file-like objects returned by data methods are cStringIO objects.

Warning

The table name and metadata names used as index columns are not sanitized.
To prevent SQL injection these should never be directly derived from
user-supplied values. This is particularly important for indexed queries.

	
connect(credentials=None)

	Connect to the key-value store

This connects to the specified location and creates the table, if needed.
Sqlite has no notion of authentication, so credentials are ignored.

	
delete(key)

	Delete a key from the repsository.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
disconnect()

	Disconnect from the key-value store

This clears the reference to the sqlite connection object, allowing it
to be garbage-collected.

	
exists(key)

	Test whether or not a key exists in the key-value store

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	exists (bool) - Whether or not the key exists in the key-value store.

	
from_bytes(key, data, buffer_size=1048576)

	Efficiently read data from a bytes object into a key in the key-value store.

This makes no attempt to set metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (bytes) – The data as a bytes object.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – This is ignored.

	
from_file(key, path, buffer_size=1048576)

	Efficiently read data from a file into a key in the key-value store.

This makes no attempt to set metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to read the data from.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – This is ignored.

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	
	data (file-like) - A readable file-like object that provides stream of data from the key-value store

	metadata (dictionary) - A dictionary of metadata for the key.

	Raises:	KeyError - If the key is not found in the store, a KeyError is raised.

	
get_data(key)

	Retrieve a stream from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
get_metadata(key, select=None)

	Retrieve the metadata for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the result. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadata (dict) - A dictionary of metadata associated with the key. The dictionary has keys as specified by the metadata_keys argument.

	Raises:	KeyError - This will raise a key error if the key is not present in the store, and if any metadata key is requested which is not present in the metadata.

	
glob(pattern)

	Return keys which match glob-style patterns

	Parameters:	pattern (string [http://docs.python.org/library/string.html#module-string]) – Glob-style pattern to match keys with.

	Returns:	result (iterable) - A iterable of keys which match the glob pattern.

	
is_connected()

	Whether or not the store is currently connected

	Returns:	connected (bool) - Whether or not the store is currently connected.

	
multiget(keys)

	Retrieve the data and metadata for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_data(keys)

	Retrieve the data for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of file-like) - An iterator of file-like data objects corresponding to the keys.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_metadata(keys, select=None)

	Retrieve the metadata for a collection of keys in the key-value store.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the results. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated with the key. The dictionaries have keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiset(keys, values, buffer_size=1048576)

	Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and values have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	values (iterable of (file-like, dict) tuples) – An iterator that provides the (data, metadata) pairs for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_data(keys, datas, buffer_size=1048576)

	Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and datas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	datas (iterable of file-like objects) – An iterator that provides the data file-like objects for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_metadata(keys, metadatas)

	Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiupdate_metadata(keys, metadatas)

	Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
query(select=None, **kwargs)

	Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of metadata for the key-value store.

	Parameters:	
	select (iterable of strings or None) – An optional list of metadata keys to return. If this is not None,
then the metadata dictionaries will only have values for the specified
keys populated.

	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of keys, metadata tuples where metadata matches all the specified values for the specified metadata keywords.

	
query_keys(**kwargs)

	Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially
more efficiently implemented.

	Parameters:	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of key-value store keys whose metadata matches all the specified values for the specified metadata keywords.

	
set(key, value, buffer_size=1048576)

	Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	value (tuple of file-like, dict) – A pair of objects, the first being a readable file-like object that
provides stream of data from the key-value store. The second is a
dictionary of metadata for the key.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
set_data(key, data, buffer_size=1048576)

	Replace the data for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (file-like) – A readable file-like object the that provides stream of data from the
key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	
to_bytes(key, buffer_size=1048576)

	Efficiently store the data associated with a key into a bytes object.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – This is ignored.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
to_file(key, path, buffer_size=1048576)

	Efficiently store the data associated with a key into a file.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to store the data to.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – This is ignored.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
transaction(notes)

	Provide a transaction context manager

	
update_metadata(key, metadata)

	Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the
provided metadata keys and values

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

File System Store

This file defines a filesystem store. This stores data in a specified directory
in a filesystem. Data files are stored in files with name key+’.data’ and
metadata files with name key+’.metadata’.

	
encore.storage.filesystem_store.init_shared_store(path, magic_fname='.FSStore')

	Create the magic file for the shared store. Useful to initialize
the store for the first time.

	Parameters:	
	path – The directory that will be used for the file store.

	magic_fname – The name of the magic file in that directory,

	
class encore.storage.filesystem_store.FileSystemStore(path, magic_fname='.FSStore')

	A store that uses a Shared file system to store the data/metadata.

	
__init__(path, magic_fname='.FSStore')

	Initializes the store given a path to a store.

	Parameters:	
	path (str:) – A path to the root of the file system store.

	magic_fname – The name of the magic file in that directory,

	
connect(credentials=None)

	Connect to the key-value store.

	Parameters:	credentials – These are not used by default.

	
delete(key)

	Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Events:	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key.

	
disconnect()

	Disconnect from the key-value store

This store does not authenticate, and has no external resources, so this
does nothing

	
exists(key)

	Test whether or not a key exists in the key-value store

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	exists (bool) - Whether or not the key exists in the key-value store.

	
from_bytes(key, data, buffer_size=1048576)

	Efficiently store a bytes object as the data associated with a key.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from a bytes object to the underlying
data store. The default implementation uses the set() method
together with a cStringIO.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (bytes) – The data as a bytes object.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
from_file(key, path, buffer_size=1048576)

	Efficiently read data from a file into a key in the key-value store.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from a path in the filesystem to the
underlying data store. The default implementation uses the set() method
together with chunked reads from the disk which are fed into the data
stream.

This makes no attempt to set metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to read the data from.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	
	data (file-like) - A readable file-like object that provides stream of data from the key-value store

	metadata (dictionary) - A dictionary of metadata for the key.

	Raises:	KeyError - If the key is not found in the store, a KeyError is raised.

	
get_data(key)

	Retrieve a stream from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
get_metadata(key, select=None)

	Retrieve the metadata for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the result. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadata (dict) - A dictionary of metadata associated with the key. The dictionary has keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
glob(pattern)

	Return keys which match glob-style patterns

	Parameters:	pattern (string [http://docs.python.org/library/string.html#module-string]) – Glob-style pattern to match keys with.

	Returns:	result (iterable) - A iterable of keys which match the glob pattern.

	
is_connected()

	Whether or not the store is currently connected

	Returns:	connected (bool) - Whether or not the store is currently connected.

	
multiget(keys)

	Retrieve the data and metadata for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_data(keys)

	Retrieve the data for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of file-like) - An iterator of file-like data objects corresponding to the keys.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_metadata(keys, select=None)

	Retrieve the metadata for a collection of keys in the key-value store.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the results. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated with the key. The dictionaries have keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiset(keys, values, buffer_size=1048576)

	Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and values have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	values (iterable of (file-like, dict) tuples) – An iterator that provides the (data, metadata) pairs for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_data(keys, datas, buffer_size=1048576)

	Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and datas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	datas (iterable of file-like objects) – An iterator that provides the data file-like objects for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_metadata(keys, metadatas)

	Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiupdate_metadata(keys, metadatas)

	Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
query(select=None, **kwargs)

	Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of metadata for the key-value store.

	Parameters:	
	select (iterable of strings or None) – An optional list of metadata keys to return. If this is not None,
then the metadata dictionaries will only have values for the specified
keys populated.

	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of (key, metadata) tuples where metadata matches all the specified values for the specified metadata keywords. If a key specified in select is not present in the metadata of a particular key, then it will not be present in the returned value.

	
query_keys(**kwargs)

	Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially
more efficiently implemented.

	Parameters:	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of key-value store keys whose metadata matches all the specified values for the specified metadata keywords.

	
set(key, value, buffer_size=1048576)

	Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	value (tuple of file-like, dict) – A pair of objects, the first being a readable file-like object that
provides stream of data from the key-value store. The second is a
dictionary of metadata for the key.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_data(key, data, buffer_size=1048576)

	Replace the data for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (file-like) – A readable file-like object the that provides stream of data from the
key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
to_bytes(key, buffer_size=1048576)

	Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a bytes
object. The default implementation uses the get() method
together with chunked reads from the returned data stream and join.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Returns:	bytes - The contents of the file-like object as bytes.

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to extracting the data.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is extracted.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after extracting the data.

	
to_file(key, path, buffer_size=1048576)

	Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a path
in the filesystem. The default implementation uses the get() method
together with chunked reads from the returned data stream to the disk.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to store the data to.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to disk.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to disk.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to disk.

	
transaction(notes)

	Provide a transaction context manager

This class does not support transactions, so it returns a dummy object.

	
update_metadata(key, metadata)

	Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the
provided metadata keys and values

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Static URL Store

This module contains the StaticURLStore store that communicates
with a remote HTTP server which provides the actual data storage. This is a
simple read-only store that can be run against a static HTTP server which
provides a json file with all metadata and then serves data from URLs from
another path. The metadata URL is polled periodically for updates.

A typical static server might be layed out as:

base_directory/
 index.json
 data/
 key1
 key2
 ...

	
class encore.storage.static_url_store.StaticURLStore(root_url, data_path, query_path, poll=300)

	A read-only key-value store that is a front end for data served via URLs

All data is assumed to be served from some root url. In addition
the store requires knowledge of two paths: a data prefix URL which is a
partial URL to which the keys will be appended when requesting data, and a
query URL which is a single URL which provides all metadata as a json
encoded file.

For example, an HTTP server may store data at URLs of the form:

http://www.example.com/data/<key>

and may store the metadata at:

http://www.example.com/index.json

These would have a root url of “http://www.example.com/”, a data path
of “data/” and a query path of “index.json”.

All queries are performed using urllib.urlopen, so this store can be
implemented by an HTTP, FTP or file server which serves static files. When
connecting, if appropriate credentials are supplied then HTTP authentication
will be used when connecting the remote server

Warning

Since we use urllib without any further modifications, HTTPS requests
do not validate the server’s certificate.

Because of the limited nature of the interface, this store implementation
is read only, and handles updates via periodic polling of the query prefix
URL. This guarantees that the viewed data is always consistent, it just may
not be current. Most of the work of querying is done on the client side
using the cached metadata.

	Parameters:	
	event_manager – An event_manager which implements the BaseEventManager
API.

	root_url (str [http://docs.python.org/library/functions.html#str]) – The base url that data is served from.

	data_path (str [http://docs.python.org/library/functions.html#str]) – The URL prefix that the data is served from.

	query_path (str [http://docs.python.org/library/functions.html#str]) – The URL that the metadata is served from.

	poll (float [http://docs.python.org/library/functions.html#float]) – The polling frequency for the polling thread. Polls every 5 min by default.

	
connect(credentials=None, proxy_handler=None, auth_handler_factory=None)

	Connect to the key-value store, optionally with authentication

This method creates appropriate urllib openers for the store.

	Parameters:	
	credentials (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary which has at least keys ‘username’ and ‘password’
and optional keys ‘uri’ and ‘realm’. The ‘uri’ will default to
the root url of the store, and ‘realm’ will default to
‘encore.storage’.

	proxy_handler (urllib.ProxyHandler) – An optional urllib.ProxyHandler instance. If none is provided
then urllib will create a proxy handler from the user’s environment
if needed.

	auth_handler_factory – An optional factory to build urllib authenticators. The credentials
will be passed as keyword arguments to this handler’s add_password
method.

	
disconnect()

	Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the
store requires.

	
exists(key)

	Test whether or not a key exists in the key-value store

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	exists (bool) - Whether or not the key exists in the key-value store.

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	
	data (file-like) - A readable file-like object that provides stream of data from the key-value store. This is the same type of filelike object returned by urllib’s urlopen function.

	metadata (dictionary) - A dictionary of metadata for the key.

	Raises:	KeyError - If the key is not found in the store, a KeyError is raised.

	
get_data(key)

	Retrieve a stream from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store. This is the same type of filelike object returned by urllib’s urlopen function.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
get_metadata(key, select=None)

	Retrieve the metadata for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the result. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadata (dict) - A dictionary of metadata associated with the key. The dictionary has keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
glob(pattern)

	Return keys which match glob-style patterns

	Parameters:	pattern (string [http://docs.python.org/library/string.html#module-string]) – Glob-style pattern to match keys with.

	Returns:	result (iterable) - A iterable of keys which match the glob pattern.

	
is_connected()

	Whether or not the store is currently connected

	Returns:	connected (bool) - Whether or not the store is currently connected.

	
multiget(keys)

	Retrieve the data and metadata for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_data(keys)

	Retrieve the data for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of file-like) - An iterator of file-like data objects corresponding to the keys.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_metadata(keys, select=None)

	Retrieve the metadata for a collection of keys in the key-value store.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the results. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated with the key. The dictionaries have keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
query(select=None, **kwargs)

	Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of metadata for the key-value store.

	Parameters:	
	select (iterable of strings or None) – An optional list of metadata keys to return. If this is not None,
then the metadata dictionaries will only have values for the specified
keys populated.

	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of (key, metadata) tuples where metadata matches all the specified values for the specified metadata keywords. If a key specified in select is not present in the metadata of a particular key, then it will not be present in the returned value.

	
query_keys(**kwargs)

	Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially
more efficiently implemented.

	Parameters:	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of key-value store keys whose metadata matches all the specified values for the specified metadata keywords.

	
to_bytes(key, buffer_size=1048576)

	Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a bytes
object. The default implementation uses the get() method
together with chunked reads from the returned data stream and join.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Returns:	bytes - The contents of the file-like object as bytes.

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to extracting the data.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is extracted.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after extracting the data.

	
to_file(key, path, buffer_size=1048576)

	Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a path
in the filesystem. The default implementation uses the get() method
together with chunked reads from the returned data stream to the disk.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to store the data to.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to disk.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to disk.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to disk.

	
update_index()

	Request the most recent version of the metadata

This downloads the json file at the query_path location, and updates
the local metadata cache with this information. It then emits events
that represent the difference between the old metadata and the new
metadata.

This method is normally called from the polling thread, but can be called
by other code when needed. It locks the metadata index whilst performing
the update.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Dynamic URL Store

This module contains the DynamicURLStore store that communicates
with a remote HTTP server which provides the actual data storage. This is a
store which implements the basic operations via HTTP GET, POST, PUT and DELETE
commands as described in the class documentation.

The implementation relies on the third-party requests library to handle the
HTTP operations.

	
class encore.storage.dynamic_url_store.DynamicURLStore(base_url, query_url, url_format='{base}/{key}/{part}', url_format_no_part='{base}/{key}', parts={'permissions': 'auth', 'data': 'data', 'metadata': 'metadata'})

	Store implementation which gets and sets from a web server

This store expects a server which exposes URLs for each key. By default
these URLs are of the form:

<base>/<key>/<part>

Where <base> is a common prefix, <key> is the key of interest, and
<part> is one of “data”, “metadata” or “auth”. If the store does not
follow this format, you can provide a differnt url_format argument
and a different mapping of <part> to aspects of the key.

The server is expected to respond to queries against these URLS in the
following ways:

	GET <base>/<key>/data

	return the bytes in the body of the response

	PUT <base>/<key>/data

	accept the data bytes from the body of the request

	GET <base>/<key>/metadata

	return metadata as JSON

	PUT <base>/<key>/metadata

	set the metadata based on JSON contained in the body of the request

	POST <base>/<key>/metadata

	update the metadata based on JSON contained in the body of the
request (as dict.update())

	GET <base>/<key>/auth

	return permissions information as JSON

	PUT <base>/<key>/auth

	set the permissions based on JSON contained in the body of the
request

	POST <base>/<key>/metadata

	update the permissions based on JSON contained in the body of the
request

In addition, a DELETE request to a URL of the form <base>/<key> should
remove the key from the remote store. This pattern is configurable via
the url_format_no_part argument to the constructor.

In addition, the server should have a query URL which accepts GET reuqests
containing a JSON data structure of metadata key, value pairs to filter
with, and should return a list of macthing keys, one per line.

	
connect(credentials=None)

	Connect to a DynamicURLStore

	Parameters:	credentials ((user_tag, requests.Session)) – The credentials are a tuple containing ther user’s permission tag
and a requests Session initialized with appropriate authentication.

	
delete(key)

	Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Events:	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key.

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	value (instance of Value) - An instance of a Value subclass which holds references to the data, metadata and other information about the key.

	Raises:	KeyError - If the key is not found in the store, a KeyError is raised.

	
get_data(key)

	Retrieve a stream from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
get_metadata(key, select=None)

	Retrieve the metadata for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the result. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadata (dict) - A dictionary of metadata associated with the key. The dictionary has keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
get_permissions(key)

	Return the set of permissions the user has

	Parameters:	key (str [http://docs.python.org/library/functions.html#str]) – The key for the resource which you want to know the permissions.

	Returns:	permissions (dict of str: set of str) - A dictionary whose keys are the permissions and values are sets of tags which have that permission.

	Raises:	
	KeyError - This error will be raised if the key does not exist or the user is not authorized to see it.

	AuthorizationError - This error will be raised if user is authorized to see the key, but is not an owner.

	
query(select=None, **kwargs)

	Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of metadata for the key-value store.

	Parameters:	
	select (iterable of strings or None) – An optional list of metadata keys to return. If this is not None,
then the metadata dictionaries will only have values for the specified
keys populated.

	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of (key, metadata) tuples where metadata matches all the specified values for the specified metadata keywords. If a key specified in select is not present in the metadata of a particular key, then it will not be present in the returned value.

	
query_keys(**kwargs)

	Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially
more efficiently implemented.

	Parameters:	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of key-value store keys whose metadata matches all the specified values for the specified metadata keywords.

	
set(key, value, buffer_size=1048576)

	Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	value (instance of Value) – An instance of a Value subclass.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_data(key, data, buffer_size=1048576)

	Replace the data for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (file-like) – A readable file-like object the that provides stream of data from the
key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_permissions(key, permissions)

	Set the permissions on a key the user owns

	Parameters:	
	key (str [http://docs.python.org/library/functions.html#str]) – The key for the resource which you want to know the permissions.

	permissions (dict of str: set of str) – A dictionary whose keys are the permissions and values are sets of
tags which have that permission. There must be an ‘owned’
permission with at least one tag.

	Raises:	
	KeyError - This error will be raised if the key does not exist or the user is not authorized to see it.

	AuthorizationError - This error will be raised if user is authorized to see the key, but is not an owner.

	
transaction(notes)

	Provide a transaction context manager

This class does not support transactions, so it returns a dummy object.

	
update_metadata(key, metadata)

	Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the
provided metadata keys and values

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
update_permissions(key, permissions)

	Add permissions on a key the user owns

The tags provided in the permissions dictionary will be added to the
existing set of tags for each permission.

	Parameters:	
	key (str [http://docs.python.org/library/functions.html#str]) – The key for the resource which you want to know the permissions.

	permissions (dict of str: set of str) – A dictionary whose keys are the permissions and values are sets of
tags which have that permission.

	Raises:	
	KeyError - This error will be raised if the key does not exist or the user is not authorized to see it.

	AuthorizationError - This error will be raised if user is authorized to see the key, but is not an owner.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Joined Store

	
class encore.storage.joined_store.JoinedStore(stores)

	A key-value store that joins together several other Key-Value Stores

A joined store is a composite store which takes a list of stores and
presents a set of keys that is the union of all the keys that are available
in all the stores. When a key is available in multiple stores, then the
store which comes first in the list has priority.

All writes are performed into the first store in the list.

	Parameters:	
	event_manager – An event_manager which implements the BaseEventManager
API.

	stores (list of stores) – The stores that are joined together by this store.

	
connect(credentials=None)

	Connect to the key-value store, optionally with authentication

This method creates or connects to any long-lived resources that the
store requires.

	Parameters:	credentials – An object that can supply appropriate credentials to to authenticate
the use of any required resources. The exact form of the credentials
is implementation-specific, but may be as simple as a
(username, password) tuple.

	
delete(key)

	Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Events:	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key.

	
disconnect()

	Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the
store requires.

	
exists(key)

	Test whether or not a key exists in the key-value store

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	exists (bool) - Whether or not the key exists in the key-value store.

	
from_bytes(key, data, buffer_size=1048576)

	Efficiently store a bytes object as the data associated with a key.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from a bytes object to the underlying
data store. The default implementation uses the set() method
together with a cStringIO.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (bytes) – The data as a bytes object.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
from_file(key, path, buffer_size=1048576)

	Efficiently read data from a file into a key in the key-value store.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from a path in the filesystem to the
underlying data store. The default implementation uses the set() method
together with chunked reads from the disk which are fed into the data
stream.

This makes no attempt to set metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to read the data from.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	
	data (file-like) - A readable file-like object that provides stream of data from the key-value store

	metadata (dictionary) - A dictionary of metadata for the key.

	Raises:	KeyError - If the key is not found in the store, a KeyError is raised.

	
get_data(key)

	Retrieve a stream from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
get_metadata(key, select=None)

	Retrieve the metadata for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the result. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadata (dict) - A dictionary of metadata associated with the key. The dictionary has keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
glob(pattern)

	Return keys which match glob-style patterns

	Parameters:	pattern (string [http://docs.python.org/library/string.html#module-string]) – Glob-style pattern to match keys with.

	Returns:	result (iterable) - A iterable of keys which match the glob pattern.

	
is_connected()

	Whether or not the store is currently connected

	Returns:	connected (bool) - Whether or not the store is currently connected.

	
multiget(keys)

	Retrieve the data and metadata for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_data(keys)

	Retrieve the data for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of file-like) - An iterator of file-like data objects corresponding to the keys.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_metadata(keys, select=None)

	Retrieve the metadata for a collection of keys in the key-value store.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the results. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated with the key. The dictionaries have keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiset(keys, values, buffer_size=1048576)

	Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and values have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	values (iterable of (file-like, dict) tuples) – An iterator that provides the (data, metadata) pairs for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_data(keys, datas, buffer_size=1048576)

	Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and datas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	datas (iterable of file-like objects) – An iterator that provides the data file-like objects for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_metadata(keys, metadatas)

	Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiupdate_metadata(keys, metadatas)

	Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
query(select=None, **kwargs)

	Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of metadata for the key-value store.

	Parameters:	
	select (iterable of strings or None) – An optional list of metadata keys to return. If this is not None,
then the metadata dictionaries will only have values for the specified
keys populated.

	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of (key, metadata) tuples where metadata matches all the specified values for the specified metadata keywords. If a key specified in select is not present in the metadata of a particular key, then it will not be present in the returned value.

	
query_keys(**kwargs)

	Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially
more efficiently implemented.

	Parameters:	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of key-value store keys whose metadata matches all the specified values for the specified metadata keywords.

	
set(key, value, buffer_size=1048576)

	Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	value (tuple of file-like, dict) – A pair of objects, the first being a readable file-like object that
provides stream of data from the key-value store. The second is a
dictionary of metadata for the key.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_data(key, data, buffer_size=1048576)

	Replace the data for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (file-like) – A readable file-like object the that provides stream of data from the
key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
to_bytes(key, buffer_size=1048576)

	Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a bytes
object. The default implementation uses the get() method
together with chunked reads from the returned data stream and join.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Returns:	bytes - The contents of the file-like object as bytes.

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to extracting the data.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is extracted.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after extracting the data.

	
to_file(key, path, buffer_size=1048576)

	Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a path
in the filesystem. The default implementation uses the get() method
together with chunked reads from the returned data stream to the disk.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to store the data to.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to disk.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to disk.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to disk.

	
transaction(notes)

	Provide a transaction context manager

Implementations which have no native notion of transactions may choose
not to implement this.

This method provides a context manager which creates a data store
transaction in its __enter__() method, and commits it in its __exit__()
method if no errors occur. Intended usage is:

with repo.transaction("Writing data..."):
 # everything written in this block is part of the transaction
 ...

If the block exits without error, the transaction commits, otherwise
the transaction should roll back the state of the underlying data store
to the start of the transaction.

	Parameters:	notes (string [http://docs.python.org/library/string.html#module-string]) – Some information about the transaction, which may or may not be used
by the implementation.

	Returns:	transaction (context manager) - A context manager for the transaction.

	Events:	
	StoreTransactionStartEvent - This event should be emitted on entry into the transaction.

	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreTransactionEndEvent - This event should be emitted on successful conclusion of the transaction, before any Set or Delete events are emitted.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set during the transaction.

	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key for all deleted keys.

	
update_metadata(key, metadata)

	Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the
provided metadata keys and values

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

MountedStore

A store which combines two stores by mounting one of the stores at a particular
point in the other store’s key space, prefixing all references to keys with
the mount point. This is similar in concept to mounting filesystems.

	
class encore.storage.mounted_store.MountedStore(mount_point, mount_store, backing_store)

	A key-value store that mounts another store at a particular key prefix

The backing store is treated as read-only, and only modifications are
allowed to the first store, and only for keys which match the mounting
prefix.

The primary purpose for this is to have a local cache of a subsection of
a remote store, such as a StaticURLStore or DynamicURLStore.

	Parameters:	
	mount_point (str [http://docs.python.org/library/functions.html#str]) – Key prefix for the mounted store.

	mount_store (AbstractStore) – The store to be mounted

	backing_store (AbstractStore) – The store that we are mounting against

	
connect(credentials=None)

	Connect to the key-value store, optionally with authentication

This method creates or connects to any long-lived resources that the
store requires.

	Parameters:	credentials – An object that can supply appropriate credentials to to authenticate
the use of any required resources. The exact form of the credentials
is implementation-specific, but may be as simple as a
(username, password) tuple.

	
delete(key)

	Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Events:	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key.

	
disconnect()

	Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the
store requires.

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	
	data (file-like) - A readable file-like object that provides stream of data from the key-value store

	metadata (dictionary) - A dictionary of metadata for the key.

	Raises:	KeyError - If the key is not found in the store, a KeyError is raised.

	
info()

	Get information about the key-value store

	Returns:	metadata (dict) - A dictionary of metadata giving information about the key-value store.

	
is_connected()

	Whether or not the store is currently connected

	Returns:	connected (bool) - Whether or not the store is currently connected.

	
push(key)

	Move a key from the mount store to the backing store

	
query(select=None, **kwargs)

	Query for keys and metadata matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of metadata for the key-value store.

	Parameters:	
	select (iterable of strings or None) – An optional list of metadata keys to return. If this is not None,
then the metadata dictionaries will only have values for the specified
keys populated.

	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of (key, metadata) tuples where metadata matches all the specified values for the specified metadata keywords. If a key specified in select is not present in the metadata of a particular key, then it will not be present in the returned value.

	
query_keys(**kwargs)

	Query for keys matching metadata provided as keyword arguments

This provides a very simple querying interface that returns precise
matches with the metadata. If no arguments are supplied, the query
will return the complete set of keys for the key-value store.

This is equivalent to self.query(**kwargs).keys(), but potentially
more efficiently implemented.

	Parameters:	kwargs – Arguments where the keywords are metadata keys, and values are
possible values for that metadata item.

	Returns:	result (iterable) - An iterable of key-value store keys whose metadata matches all the specified values for the specified metadata keywords.

	
set(key, value, buffer_size=1048576)

	Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	value (tuple of file-like, dict) – A pair of objects, the first being a readable file-like object that
provides stream of data from the key-value store. The second is a
dictionary of metadata for the key.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_data(key, data, buffer_size=1048576)

	Replace the data for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (file-like) – A readable file-like object the that provides stream of data from the
key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
set_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	
transaction(notes)

	Provide a transaction context manager

Implementations which have no native notion of transactions may choose
not to implement this.

This method provides a context manager which creates a data store
transaction in its __enter__() method, and commits it in its __exit__()
method if no errors occur. Intended usage is:

with repo.transaction("Writing data..."):
 # everything written in this block is part of the transaction
 ...

If the block exits without error, the transaction commits, otherwise
the transaction should roll back the state of the underlying data store
to the start of the transaction.

	Parameters:	notes (string [http://docs.python.org/library/string.html#module-string]) – Some information about the transaction, which may or may not be used
by the implementation.

	Returns:	transaction (context manager) - A context manager for the transaction.

	Events:	
	StoreTransactionStartEvent - This event should be emitted on entry into the transaction.

	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreTransactionEndEvent - This event should be emitted on successful conclusion of the transaction, before any Set or Delete events are emitted.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set during the transaction.

	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key for all deleted keys.

	
update_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Storage

Simple Authenticating Store

This module provides a simple wrapper for a store that implements a simple
authentication scheme. This may be used as a base for more complex and fine-grained
authentication.

By default it authenticates by computing a (salted) hash of the user’s password
and validates it against the hash stored in an appropriate key. Authenticated
users then have full access to all keys.

Subclasses can refine this behaviour by overriding the check_permissions()
method to provide different or more controlled permissioning.

	
encore.storage.simple_auth_store.make_encoder(salt, hasher=None)

	Create a moderately secure salted encoder

	Parameters:	
	salt (bytes) – A salt that is added to the user-supplied password before hashing.
This salt should be kept secret, but needs to be remembered across
invocations (ie. the same salt needs to be used every time the password
is encoded).

	hasher (callable [http://docs.python.org/library/functions.html#callable]) – A callable that takes a string and returns a cryptographic hash of the
string. The default is sha1_hasher().

	
encore.storage.simple_auth_store.sha1_hasher(s)

	A simple utility function for producing a sha1 digest of a string.

	
class encore.storage.simple_auth_store.SimpleAuthStore(store, encoder, user_key_path='.user_', user_key_store=None)

	A key-value store that wraps another store and implements simple authentication

This wraps an existing store with no notion of authentication and provides
simple username/password authentication, storing a hash of the password in
the wrapped store.

The base implementation has all-or-nothing

	Parameters:	
	event_manager – An event_manager which implements the BaseEventManager
API.

	store (AbstractStore instance) – The wrapped store that actually holds the data.

	encoder (callable [http://docs.python.org/library/functions.html#callable]) – A callable that computes the password hash.

	user_key_path (str [http://docs.python.org/library/functions.html#str]) – The prefix to put before the username for the keys that store the user’s
information. At present these keys must simply hold the encoded hash of
the user’s password.

	user_key_store (AbstractStore instance) – The store to store the user keys in. Defaults to the wrapped store.

	
check_permissions(key=None)

	Return permissions that the user has for the provided key

The default behaviour gives all authenticated users full access to all
keys. Subclasses may implement finer-grained controls based on user
groups or other permissioning systems.

	Parameters:	key (str or None) – The key which the permissions are being requested for, or the global
permissions if the key is None.

	Returns:	permissions (set) - A set of strings chosen from ‘connect’, ‘exists’, ‘get’, ‘set’, and/or ‘delete’ which express the permissions that the user has on that particular key.

	
connect(credentials=None)

	Connect to the key-value store, optionally with authentication

This method creates or connects to any long-lived resources that the
store requires.

	Parameters:	credentials – A dictionary with keys ‘username’ and ‘password’.

	
delete(key)

	Delete a key from the repsository.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Events:	StoreDeleteEvent - On successful completion of a transaction, a StoreDeleteEvent should be emitted with the key.

	Raises:	AuthenticationError - If the user has no rights to delete the key, then an Authentication error is raised.

	
disconnect()

	Disconnect from the key-value store

This method disposes or disconnects to any long-lived resources that the
store requires.

	
exists(key)

	Test whether or not a key exists in the key-value store

If a user does not have ‘exists’ permissions for this key, then it will
return False, even if the key exists in the underlying store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	exists (bool) - Whether or not the key exists in the key-value store.

	
from_bytes(key, data, buffer_size=1048576)

	Efficiently store a bytes object as the data associated with a key.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from a bytes object to the underlying
data store. The default implementation uses the set() method
together with a cStringIO.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (bytes) – The data as a bytes object.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
from_file(key, path, buffer_size=1048576)

	Efficiently read data from a file into a key in the key-value store.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from a path in the filesystem to the
underlying data store. The default implementation uses the set() method
together with chunked reads from the disk which are fed into the data
stream.

This makes no attempt to set metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to read the data from.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	
get(key)

	Retrieve a stream of data and metdata from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	
	data (file-like) - A readable file-like object that provides stream of data from the key-value store

	metadata (dictionary) - A dictionary of metadata for the key.

	Raises:	
	KeyError - If the key is not found in the store, or does not exist for the user, a KeyError is raised.

	AuthenticationError - If the user has no rights to get the key, then an Authentication error is raised.

	
get_data(key)

	Retrieve a stream from a given key in the key-value store.

	Parameters:	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	Returns:	data (file-like) - A readable file-like object the that provides stream of data from the key-value store.

	Raises:	
	KeyError - This will raise a key error if the key is not present in the store.

	AuthenticationError - If the user has no rights to get the key, then an Authentication error is raised.

	
get_metadata(key, select=None)

	Retrieve the metadata for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the result. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadata (dict) - A dictionary of metadata associated with the key. The dictionary has keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	
	KeyError - This will raise a key error if the key is not present in the store.

	AuthenticationError - If the user has no rights to get the key, then an Authentication error is raised.

	
glob(pattern)

	Return keys which match glob-style patterns

	Parameters:	pattern (string [http://docs.python.org/library/string.html#module-string]) – Glob-style pattern to match keys with.

	Returns:	result (iterable) - A iterable of keys which match the glob pattern.

	
is_connected()

	Whether or not the store is currently connected

	Returns:	connected (bool) - Whether or not the store is currently connected.

	
multiget(keys)

	Retrieve the data and metadata for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of (file-like, dict) tuples) - An iterator of (data, metadata) pairs.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_data(keys)

	Retrieve the data for a collection of keys.

	Parameters:	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	Returns:	result (iterator of file-like) - An iterator of file-like data objects corresponding to the keys.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiget_metadata(keys, select=None)

	Retrieve the metadata for a collection of keys in the key-value store.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	select (iterable of strings or None) – Which metadata keys to populate in the results. If unspecified, then
return the entire metadata dictionary.

	Returns:	metadatas (iterator of dicts) - An iterator of dictionaries of metadata associated with the key. The dictionaries have keys as specified by the select argument. If a key specified in select is not present in the metadata, then it will not be present in the returned value.

	Raises:	KeyError - This will raise a key error if the key is not present in the store.

	
multiset(keys, values, buffer_size=1048576)

	Set the data and metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and values have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	values (iterable of (file-like, dict) tuples) – An iterator that provides the (data, metadata) pairs for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_data(keys, datas, buffer_size=1048576)

	Set the data for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and datas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	datas (iterable of file-like objects) – An iterator that provides the data file-like objects for the
corresponding keys.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiset_metadata(keys, metadatas)

	Set the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
multiupdate_metadata(keys, metadatas)

	Update the metadata for a collection of keys.

Where supported by an implementation, this should perform the whole
collection of sets as a single transaction.

Like zip() if keys and metadatas have different lengths, then any excess
values in the longer list should be silently ignored.

	Parameters:	
	keys (iterable of strings) – The keys for the resources in the key-value store. Each key is a
unique identifier for a resource within the key-value store.

	metadatas (iterable of dicts) – An iterator that provides the metadata dictionaries for the
corresponding keys.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata for each key that was set.

	
set(key, value, buffer_size=1048576)

	Store a stream of data into a given key in the key-value store.

This may be left unimplemented by subclasses that represent a read-only
key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	value (tuple of file-like, dict) – A pair of objects, the first being a readable file-like object that
provides stream of data from the key-value store. The second is a
dictionary of metadata for the key.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	Raises:	AuthenticationError - If the user has no rights to set the key, then an Authentication error is raised.

	
set_data(key, data, buffer_size=1048576)

	Replace the data for a given key in the key-value store.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	data (file-like) – A readable file-like object the that provides stream of data from the
key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to the underlying store.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to the underlying store.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to the underlying store.

	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	Raises:	AuthenticationError - If the user has no rights to set the key, then an Authentication error is raised.

	
set_metadata(key, metadata)

	Set new metadata for a given key in the key-value store.

This replaces the existing metadata set for the key with a new set of
metadata.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	Raises:	AuthenticationError - If the user has no rights to set the key, then an Authentication error is raised.

	
to_bytes(key, buffer_size=1048576)

	Efficiently store the data associated with a key into a bytes object.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a bytes
object. The default implementation uses the get() method
together with chunked reads from the returned data stream and join.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Returns:	bytes - The contents of the file-like object as bytes.

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to extracting the data.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is extracted.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after extracting the data.

	
to_file(key, path, buffer_size=1048576)

	Efficiently store the data associated with a key into a file.

This method can be optionally overriden by subclasses to proved a more
efficient way of copy the data from the underlying data store to a path
in the filesystem. The default implementation uses the get() method
together with chunked reads from the returned data stream to the disk.

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	path (string [http://docs.python.org/library/string.html#module-string]) – A file system path to store the data to.

	buffer_size (int [http://docs.python.org/library/functions.html#int]) – An optional indicator of the number of bytes to read at a time.
Implementations are free to ignore this hint or use a different
default if they need to. The default is 1048576 bytes (1 MiB).

	Events:	
	StoreProgressStartEvent - For buffering implementations, this event should be emitted prior to writing any data to disk.

	StoreProgressStepEvent - For buffering implementations, this event should be emitted periodically as data is written to disk.

	StoreProgressEndEvent - For buffering implementations, this event should be emitted after finishing writing to disk.

	
update_metadata(key, metadata)

	Update the metadata for a given key in the key-value store.

This performs a dictionary update on the existing metadata with the
provided metadata keys and values

	Parameters:	
	key (string [http://docs.python.org/library/string.html#module-string]) – The key for the resource in the key-value store. They key is a unique
identifier for the resource within the key-value store.

	metadata (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary of metadata to associate with the key. The dictionary
keys should be strings which are valid Python identifiers.

	Events:	StoreSetEvent - On successful completion of a transaction, a StoreSetEvent should be emitted with the key & metadata

	Raises:	AuthenticationError - If the user has no rights to set the key, then an Authentication error is raised.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

Concurrent Package

The encore.concurrent module provides utilities and libraries to
assist with threaded and other parallel code.

The encore.concurrent.futures subpackage provides an enhanced
version of the concurrent.futures package for Python 2.7 with some
useful experimental additions.

The encore.concurrent.threadtools module provides some utilities
that encapsulate useful patterns in threaded code.

Contents

	encore.concurrent Package
	threadtools Module

	encore.concurrent.futures Package
	ThreadPool Executors

	enhanced_thread_pool_executor Module

	synchronous Module

	future Module

	abc_work_scheduler Module

	asynchronizer Module

	serializer Module

	serializing_asynchronizer Module

Indices and tables

	Index

	Module Index

	Search Page

License

This software is OSI Certified Open Source Software.
OSI Certified is a certification mark of the Open Source Initiative.

Unless otherwise noted:

Copyright (c) 2011, Enthought, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Enthought, Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

util.human_date module

Copyright 2009 Jai Vikram Singh Verma (jaivikram[dot]verma[at]gmail[dot]com)
Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied.
See the License for the specific language governing permissions
and limitations under the License.

concurrent.futures.enhanced_thread_pool_executor

Copyright 2009 Brian Quinlan. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Concurrent Package

encore.concurrent Package

threadtools Module

Module of useful routines for working with concurrency.

	
encore.concurrent.threadtools.synchronized(func)

	Decorator that prevents simultaneous execution of a function

This decorator that ensures that only one thread at a time can be executing
the decorated function at the same time by using a dedicated anonymous
lock.

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Encore 0.7.1.dev documentation

 	Concurrent Package

encore.concurrent.futures Package

ThreadPool Executors

enhanced_thread_pool_executor Module

synchronous Module

future Module

abc_work_scheduler Module

asynchronizer Module

serializer Module

serializing_asynchronizer Module

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Encore 0.7.1.dev documentation

 Python Module Index

 e

 			

 		
 e	

 	[image: -]
 	
 encore	

 	
 	
 encore.concurrent.threadtools	

 	
 	
 encore.events.abstract_event_manager	

 	
 	
 encore.events.event_manager	

 	
 	
 encore.events.progress_events	

 	
 	
 encore.storage.abstract_store	

 	
 	
 encore.storage.dict_memory_store	

 	
 	
 encore.storage.dynamic_url_store	

 	
 	
 encore.storage.events	

 	
 	
 encore.storage.filesystem_store	

 	
 	
 encore.storage.joined_store	

 	
 	
 encore.storage.mounted_store	

 	
 	
 encore.storage.simple_auth_store	

 	
 	
 encore.storage.sqlite_store	

 	
 	
 encore.storage.static_url_store	

 	
 	
 encore.storage.utils	

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Encore 0.7.1.dev documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	

 	__init__() (encore.events.progress_events.ProgressManager method)

 	

 	(encore.storage.filesystem_store.FileSystemStore method)

A

 	

 	AbstractAuthorizingStore (class in encore.storage.abstract_store)

 	AbstractReadOnlyStore (class in encore.storage.abstract_store)

 	

 	AbstractStore (class in encore.storage.abstract_store)

 	action (encore.storage.events.StoreDeleteEvent attribute)

 	

 	(encore.storage.events.StoreModificationEvent attribute)

 	(encore.storage.events.StoreSetEvent attribute)

 	(encore.storage.events.StoreUpdateEvent attribute)

B

 	

 	BaseEvent (class in encore.events.abstract_event_manager)

 	BaseEventManager (class in encore.events.abstract_event_manager)

 	begin() (encore.storage.utils.SimpleTransactionContext method)

 	

 	buffer_iterator() (in module encore.storage.utils)

 	BufferIteratorIO (class in encore.storage.utils)

C

 	

 	check_permissions() (encore.storage.simple_auth_store.SimpleAuthStore method)

 	commit() (encore.storage.utils.SimpleTransactionContext method)

 	

 	connect() (encore.events.abstract_event_manager.BaseEventManager method)

 	

 	(encore.events.event_manager.EventManager method)

 	(encore.storage.abstract_store.AbstractReadOnlyStore method)

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

D

 	

 	data (encore.storage.abstract_store.Value attribute)

 	delete() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	DictMemoryStore (class in encore.storage.dict_memory_store)

 	disable() (encore.events.abstract_event_manager.BaseEventManager method)

 	

 	(encore.events.event_manager.EventManager method)

 	

 	disconnect() (encore.events.abstract_event_manager.BaseEventManager method)

 	

 	(encore.events.event_manager.EventManager method)

 	(encore.storage.abstract_store.AbstractReadOnlyStore method)

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	DummyTransactionContext (class in encore.storage.utils)

 	DynamicURLStore (class in encore.storage.dynamic_url_store)

E

 	

 	emit() (encore.events.abstract_event_manager.BaseEventManager method)

 	

 	(encore.events.event_manager.EventManager method)

 	enable() (encore.events.abstract_event_manager.BaseEventManager method)

 	

 	(encore.events.event_manager.EventManager method)

 	encore.concurrent.threadtools (module)

 	encore.events.abstract_event_manager (module)

 	encore.events.event_manager (module)

 	encore.events.progress_events (module)

 	encore.storage.abstract_store (module)

 	encore.storage.dict_memory_store (module)

 	encore.storage.dynamic_url_store (module)

 	encore.storage.events (module)

 	encore.storage.filesystem_store (module)

 	encore.storage.joined_store (module)

 	

 	encore.storage.mounted_store (module)

 	encore.storage.simple_auth_store (module)

 	encore.storage.sqlite_store (module)

 	encore.storage.static_url_store (module)

 	encore.storage.utils (module)

 	end() (encore.events.progress_events.ProgressManager method)

 	EndEventType (encore.events.progress_events.ProgressManager attribute)

 	

 	(encore.storage.utils.StoreProgressManager attribute)

 	event_manager (encore.storage.abstract_store.AbstractAuthorizingStore attribute)

 	

 	(encore.storage.abstract_store.AbstractReadOnlyStore attribute)

 	(encore.storage.abstract_store.AbstractStore attribute)

 	EventManager (class in encore.events.event_manager)

 	exists() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	exit_state (encore.events.progress_events.ProgressEndEvent attribute)

 	

 	(encore.storage.events.StoreProgressEndEvent attribute)

F

 	

 	FileSystemStore (class in encore.storage.filesystem_store)

 	from_bytes() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	

 	from_file() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

G

 	

 	get() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	get_data() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	get_data_range() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	get_metadata() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	get_permissions() (encore.storage.abstract_store.AbstractAuthorizingStore method)

 	

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	glob() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

I

 	

 	info() (encore.storage.mounted_store.MountedStore method)

 	init_shared_store() (in module encore.storage.filesystem_store)

 	is_connected() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	

 	is_enabled() (encore.events.abstract_event_manager.BaseEventManager method)

 	

 	(encore.events.event_manager.EventManager method)

 	iterdata() (encore.storage.abstract_store.Value method)

J

 	

 	JoinedStore (class in encore.storage.joined_store)

K

 	

 	key (encore.storage.events.StoreDeleteEvent attribute)

 	

 	(encore.storage.events.StoreKeyEvent attribute)

 	(encore.storage.events.StoreModificationEvent attribute)

 	(encore.storage.events.StoreProgressEndEvent attribute)

 	(encore.storage.events.StoreProgressEvent attribute)

 	(encore.storage.events.StoreProgressStartEvent attribute)

 	(encore.storage.events.StoreProgressStepEvent attribute)

 	(encore.storage.events.StoreSetEvent attribute)

 	(encore.storage.events.StoreUpdateEvent attribute)

M

 	

 	make_encoder() (in module encore.storage.simple_auth_store)

 	mark_as_handled() (encore.events.abstract_event_manager.BaseEvent method)

 	message (encore.events.progress_events.ProgressEndEvent attribute)

 	

 	(encore.events.progress_events.ProgressEvent attribute)

 	(encore.events.progress_events.ProgressStartEvent attribute)

 	(encore.events.progress_events.ProgressStepEvent attribute)

 	(encore.storage.events.StoreProgressEndEvent attribute)

 	(encore.storage.events.StoreProgressEvent attribute)

 	(encore.storage.events.StoreProgressStartEvent attribute)

 	(encore.storage.events.StoreProgressStepEvent attribute)

 	metadata (encore.storage.abstract_store.Value attribute)

 	

 	(encore.storage.events.StoreDeleteEvent attribute)

 	(encore.storage.events.StoreKeyEvent attribute)

 	(encore.storage.events.StoreModificationEvent attribute)

 	(encore.storage.events.StoreProgressEndEvent attribute)

 	(encore.storage.events.StoreProgressEvent attribute)

 	(encore.storage.events.StoreProgressStartEvent attribute)

 	(encore.storage.events.StoreProgressStepEvent attribute)

 	(encore.storage.events.StoreSetEvent attribute)

 	(encore.storage.events.StoreUpdateEvent attribute)

 	MountedStore (class in encore.storage.mounted_store)

 	multiget() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	

 	multiget_data() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	multiget_metadata() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	multiset() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	multiset_data() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	multiset_metadata() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	multiupdate_metadata() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

O

 	

 	operation_id (encore.events.progress_events.ProgressEndEvent attribute)

 	

 	(encore.events.progress_events.ProgressEvent attribute)

 	(encore.events.progress_events.ProgressStartEvent attribute)

 	(encore.events.progress_events.ProgressStepEvent attribute)

 	(encore.storage.events.StoreProgressEndEvent attribute)

 	(encore.storage.events.StoreProgressEvent attribute)

 	(encore.storage.events.StoreProgressStartEvent attribute)

 	(encore.storage.events.StoreProgressStepEvent attribute)

P

 	

 	permissions (encore.storage.abstract_store.Value attribute)

 	post_emit() (encore.events.abstract_event_manager.BaseEvent method)

 	pre_emit() (encore.events.abstract_event_manager.BaseEvent method)

 	ProgressEndEvent (class in encore.events.progress_events)

 	ProgressEvent (class in encore.events.progress_events)

 	

 	ProgressManager (class in encore.events.progress_events)

 	ProgressStartEvent (class in encore.events.progress_events)

 	ProgressStepEvent (class in encore.events.progress_events)

 	push() (encore.storage.mounted_store.MountedStore method)

Q

 	

 	query() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	

 	query_keys() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

R

 	

 	range() (encore.storage.abstract_store.Value method)

 	read() (encore.storage.utils.BufferIteratorIO method)

 	

 	rollback() (encore.storage.utils.SimpleTransactionContext method)

S

 	

 	set() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	set_data() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	set_metadata() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	set_permissions() (encore.storage.abstract_store.AbstractAuthorizingStore method)

 	

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	sha1_hasher() (in module encore.storage.simple_auth_store)

 	SimpleAuthStore (class in encore.storage.simple_auth_store)

 	SimpleTransactionContext (class in encore.storage.utils)

 	source (encore.storage.events.StoreEvent attribute)

 	SqliteStore (class in encore.storage.sqlite_store)

 	start() (encore.events.progress_events.ProgressManager method)

 	StartEventType (encore.events.progress_events.ProgressManager attribute)

 	

 	(encore.storage.utils.StoreProgressManager attribute)

 	StaticURLStore (class in encore.storage.static_url_store)

 	step (encore.events.progress_events.ProgressStepEvent attribute)

 	

 	(encore.storage.events.StoreProgressStepEvent attribute)

 	step() (encore.events.progress_events.ProgressManager method)

 	

 	StepEventType (encore.events.progress_events.ProgressManager attribute)

 	

 	(encore.storage.utils.StoreProgressManager attribute)

 	steps (encore.events.progress_events.ProgressStartEvent attribute)

 	

 	(encore.storage.events.StoreProgressStartEvent attribute)

 	StoreDeleteEvent (class in encore.storage.events)

 	StoreEvent (class in encore.storage.events)

 	StoreKeyEvent (class in encore.storage.events)

 	StoreModificationEvent (class in encore.storage.events)

 	StoreProgressEndEvent (class in encore.storage.events)

 	StoreProgressEvent (class in encore.storage.events)

 	StoreProgressManager (class in encore.storage.utils)

 	StoreProgressStartEvent (class in encore.storage.events)

 	StoreProgressStepEvent (class in encore.storage.events)

 	StoreSetEvent (class in encore.storage.events)

 	StoreUpdateEvent (class in encore.storage.events)

 	synchronized() (in module encore.concurrent.threadtools)

T

 	

 	tee() (in module encore.storage.utils)

 	to_bytes() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	

 	to_file() (encore.storage.abstract_store.AbstractReadOnlyStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	(encore.storage.static_url_store.StaticURLStore method)

 	transaction() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

U

 	

 	update_index() (encore.storage.static_url_store.StaticURLStore method)

 	update_metadata() (encore.storage.abstract_store.AbstractStore method)

 	

 	(encore.storage.dict_memory_store.DictMemoryStore method)

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	(encore.storage.filesystem_store.FileSystemStore method)

 	(encore.storage.joined_store.JoinedStore method)

 	(encore.storage.mounted_store.MountedStore method)

 	(encore.storage.simple_auth_store.SimpleAuthStore method)

 	(encore.storage.sqlite_store.SqliteStore method)

 	

 	update_permissions() (encore.storage.abstract_store.AbstractAuthorizingStore method)

 	

 	(encore.storage.dynamic_url_store.DynamicURLStore method)

 	user_tag (encore.storage.abstract_store.AbstractAuthorizingStore attribute)

V

 	

 	Value (class in encore.storage.abstract_store)

 Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/e-logo-rev.png

_static/down.png

_static/up.png

_static/down-pressed.png

_images/inheritance-7ca0042360920babc4dc24785e9f4e97d7adf1ac.png
[Progressndevent | storeProgressEndEvent

e [Froressstariient { Storeprogressstarevent

e

ProgressEvent | | StoreProgressEvent

[ProgressstepEvent Lstureﬂe\eteEvem

Basebvert |

StoreKeyEvent

] StoreModifiationEvent StoresetEvent
StoreTansactionEvent +f StoreTansactionstartevent StoreUpdateEvent

StoreTransactionEndEvert

_images/graphviz-cd912d97e026ade897130acc415509ff561b34c1.png
Eqgg Store AP|

i

Memory Store

Disk Store

HTTP Store

Cached Store

SQL Store

_images/graphviz-d72272f4ddade45ab7c700db34c9bb7f02e2cb45.png
Eqgg Store

Code Block Store

Configuration Store

]

General Implementation

_static/up-pressed.png

_images/graphviz-0a67c9692c62bcbcb0fc6152e9585f22a3b392cf.png
Eqgg Store

Code Block Store

Configuration Store

o~

Key-Value Store APl

Y

Memory Store

Disk Store

HTTP Store

Cached Store

SQL Store

search.html

 Navigation

 		
 index

 		
 modules |

 		Encore 0.7.1.dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2017, Enthought, Inc..
 Last updated on Jan 19, 2017.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

